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ARTICLE INFO ABSTRACT

JEL classifications: We investigate the predictive content of climate policy uncertainty (CPU) for forecasting the inflation rate of the
€22 United States (US) over the monthly period of 1987:05-2024:11. We evaluate the performance of our proposed

€53 CPU-based predictive model, estimated via the Feasible Quasi Generalized Least Squares (FQGLS) approach,
Eg; against a historical average benchmark model, with the FQGLS technique adopted to account for hetero-
054 scedasticity and autocorrelation in the data. We find statistical evidence in favour of a CPU-based model relative
Keywords: to the benchmark, as well as in the case of an extended model involving physical risks of climate change and
Climate Policy Uncertainty financial and macroeconomic factors, extracted from a large data set, when CPU is included. The predictive
Inflation superiority of climate policy-related uncertainties relative to the historical mean remains robust across alter-
Forecasting native local and global CPU metrics, as well as in a mixed-frequency setup, given the availability of high-

frequency (weekly) CPU data. Moreover, the importance of local- and global-CPUs is also found to hold for
forecasting the inflation rates of 11 other advanced and emerging countries, in a statistically significant manner
relative to the historical average model. Across all 12 economies, own- and global-CPUs perform equally well in
forecasting the respective inflation rates. The general importance of uncertainties surrounding policy decisions to
tackle climate change in shaping the future path of inflation, understandably, carries implications for the
monetary authority.

calibrated to the United States. They show that heightened climate
policy uncertainty reduces physical capital by prompting firms to post-

1. Introduction

In recent years, the intensification of climate risks has become a
critical global concern, with extreme weather events, ranging from
heatwaves and heavy precipitation to powerful windstorms, occurring
with increasing frequency and severity (AghaKouchak et al., 2020), and
hence, imposing a large aggregate risk to the economy (Giglio et al.,
2021). Although major economies have pledged to address climate
change, uncertainty surrounding the formulation and implementation of
climate policies continues to rise and has become an important factor
influencing macroeconomic outcomes (Ilhan et al., 2020; Ma et al.,
2023).

Against this backdrop, a key yet insufficiently explored question is
whether Climate Policy Uncertainty (CPU) provides forward-looking
information with incremental value for forecasting future inflation.
Huang and Teresa Punzi (2024) develop an environmental DSGE model

pone investment, thereby lowering employment, consumption, and
output, thereby generating an inflationary effect. These authors also
empirically verify the theoretical implications associated with higher
inflation following a positive shock to a newspaper-based index of
climate policy uncertainty (CPU), as developed by Gavriilidis (2021), for
the US using a Bayesian Vector Autoregressive (BVAR) model. Similar
inflationary effects of CPU have been documented for the US and other
economies around the world by Moessner (2022), Dogan (2023),
Chaabane (2024), and Akshaya and Gopalakrishna (2025). However,
this evidence is primarily based on in-sample analyses, whereas mone-
tary policy relies more heavily on out-of-sample forecasting perfor-
mance. Therefore, determining whether the CPU can enhance inflation
forecasts is of considerable importance for central banks and
policymakers.
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In light of this requirement, we analyze the role of the CPU index of
Gavriilidis (2021), as generally used by the abovementioned in-sample
analyses, in predicting the inflation rate of the US, but from the
perspective of forecasting, over the monthly period of
1987:05-2024:11. To check for the robustness of our findings, we also
utilize an alternative newspapers articles-based CPU index data devel-
oped by Ji et al. (2024) and Ma et al. (2024) to perform a forecasting
analysis of monthly US inflation covering 2000:01-2023:12.

The advantage of using these two studies is multi-dimensional:
Firstly, besides the US, Ji et al. (2024) and Ma et al. (2024), also de-
velops the CPU indexes for 11 other advanced (Australia, Canada,
France, Germany, Japan, South Korea, and the United Kingdom (UK))
and emerging (Brazil, China, India, and South Africa) countries, thus
allowing us to extend our analysis to a global dimension, and hence,
generalize our findings. Secondly, these authors also develop 3 global
CPU (GCPU) indexes, as weighted averages of the 12 country-specific
CPUs, involving equal weights, and the same based on current prices
Gross Domestic Product (GDP), and purchasing power parity (PPP)-ad-
justed GDP. This enables us to also analyze the role of the global CPU
indexes in forecasting the inflation rates of the 12 economies, given
evidence of a general trend of rising co-movement of uncertainty
involving climate-related policies across major economies of the world
post the Paris Climate Agreement in 2015 (Challinor et al., 2017, 2018;
Lin and Zhao, 2023) as they try to embark on the path of the so-called
“green energy transition” (Bettarelli et al., 2025). Naturally, one
would expect the GCPUs, capturing the CPUs of all the countries in our
sample, to also indirectly influence local-inflation, as they might contain
information of inflation spillovers and connectedness due to trade
linkages and alignment of monetary policy decisions (Al-Nassar and
Albahouth, 2023), Lastly, in addition to the monthly indexes of CPU,
these two papers also makes available daily and weekly values of the
same. Given this, and the fact that averaging high-frequency data to
low-frequency can result in loss of information (Clements and Galvao,
2008), we utilize the weekly local and global indexes in a Mixed Data
Sampling (MIDAS) framework (Ghysels et al., 2007), to check for the
degree of robustness of our results for the US derived under the fore-
casting exercise obtained with the monthly version of these indexes. !

Moreover, the theoretical channels through which the CPU affects
inflation have become increasingly clear in the literature. First, higher
policy uncertainty raises firms' expected volatility regarding future en-
ergy policies, carbon taxes, and regulatory costs, prompting them to
postpone investment. This slows capital accumulation, constrains sup-
ply, and ultimately puts upward pressure on prices (Huang & Punzi,
2024). Second, CPU significantly influences commodity market-
s—particularly the oil market—by increasing risk premia and ampli-
fying oil price volatility (Guo et al., 2022; Li, 2022). The transmission of
higher energy costs then feeds into both producer prices and consumer
prices. Third, CPU induces exchange rate volatility (Peng et al., 2023;
Afshan et al., 2023), thereby raising imported inflation, with even
stronger effects in more open economies.

In summary, this paper makes four key contributions. First, while
existing studies primarily focus on structural models or in-sample effects
within VAR frameworks, this paper is the first to systematically examine
the forward-looking impact of CPU on inflation from an out-of-sample
forecasting perspective, covering the United States and 11 major
advanced and emerging economies. Second, by employing CPU indices
from multiple sources, we document that domestic CPU and global CPU
are substitutable for forecasting inflation, providing new empirical ev-
idence on the cross-country synchronization and risk transmission of
climate policy uncertainty. Third, we incorporate FQGLS and MIDAS
into the climate-inflation forecasting framework, which not only

! Unfortunately, we observed convergence issues in the MIDAS model with
the daily CPU data for the US and with both the daily and weekly CPU indexes
for the other 11 countries, due to a large number of zeros.
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effectively addresses heteroskedasticity and autocorrelation but also
fully exploits high-frequency weekly CPU information to forecast
monthly inflation. Finally, we construct an extended model by ac-
counting for the effects of extreme weather (Liao et al., 2024; Sheng
et al., 2022b; Kim et al., 2025) and a wide set of financial and macro-
economic variables (Stock & Watson, 2002, 2009), augmenting the
forecasting specification with physical-risk indicators and eight
macro-financial factors extracted via PCA. This allows us to assess
whether CPU retains incremental predictive value after controlling for
key climate and macroeconomic drivers.

The remainder of the paper is organized as follows: Section 2 outlines
the data; Section 3 presents the methodology; Section 4 discusses the
results; and Section 5 provides the conclusions.

2. Data issues

As far as the inflation data is concerned for the US, as well as the 11
other countries, we utilize the year-on-year first-differences of the nat-
ural logarithmic values of the Harmonized Index of Consumer Prices
(HICP) expressed in percentages (i.e., multiplied by 100), with the HICP
obtained from the Main Economic Indicator (MEI) database of the
Organisation for Economic Co-operation and Development (OECD).>

In terms of the CPU data for the US associated with the longer sample
period of the forecasting exercise, i.e., 1987:05-2024:11, we rely on the
index created by Gavriilidis (2021).% To construct the CPU index, the
author searches for articles in eight leading US newspapers (Boston
Globe, Chicago Tribune, Los Angeles Times, Miami Herald, New York
Times, Tampa Bay Times, USA Today and the Wall Street Journal) which
contain at least one keywords in all three categories of: (1) Climate, (2)
Policy, and, (3) Uncertainty. Specifically, the terms searched for are:
“uncertainty” or “uncertain” and “carbon dioxide” or “climate” or
“climate risk” or “greenhouse gas emissions” or “greenhouse” or “CO2”
or “emissions” or “global warming” or “climate change” or “green en-
ergy” or “renewable energy” or “environmental” and “regulation” or
“legislation” or “White House” or “Congress” or “EPA” or “law” or
“policy” (including variants such as: “uncertainties”, “regulatory”,
“policies”, etc.). For each newspaper, the number of relevant articles per
month is scaled with the total number of articles during the same month,
with these eight series then standardized to have a unit standard devi-
ation and then averaged across newspapers by month. Finally, the
averaged series are normalized to have a mean value of 100 for the
period April 1987 to August 2022.

In the papers by Ji et al. (2024) and Ma et al. (2024), the same
approach as Gavriilidis (2021) was followed for the US, but restricted to
searches of the Wall Street Journal, as in Engle et al. (2020). Though
restricted in terms of newspaper coverage, these authors provide daily
and weekly versions of the US CPU, which we use to conduct a
MIDAS-based forecasting analysis of the corresponding inflation rate,
thereby providing an advantage for our analysis. The data coverage for
the US in this case runs from 2000:01-2023:12.

In addition, as stated earlier, these two studies also construct (daily,
weekly and monthly) indexes of CPU for 11 other advanced and
emerging countries, as well as 3 global indexes based on weighted av-
erages of the 12 countries under 3 different weighting schemes: equal
weights (GCPU-EQ), current prices GDP (GCPU), and PPP-adjusted GDP
(GCPU-GDP).* Note that, for the 11 other countries, Ji et al. (2024) and
Ma et al. (2024) perform most searches in the native language, if not

2 See: https://www.oecd.org/en/publications/serials/main-economic-indic
ators_glgllclc.html.

3 The data can be downloaded from: https://policyuncertainty.com/clima
te_uncertainty.html.

4 Data for the 12 countries at the three frequencies can be accessed from:
http://www.cnefn.com/data/download/climate-risk-database/.
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available in English, of the specific important newspaper’ chosen for
these economies, by utilizing climate policy white papers from the
Intergovernmental Panel on Climate Change (IPCC) and national cli-
mate/environmental authorities to construct a vocabulary for terms
related to climate, policy and uncertainty.®

Given the availability of the CPU of the 11 other countries and the
GCPU indexes at the time of writing this paper, while all data ended in
2023:12, the forecasting exercise for inflation covered heterogeneous
starting periods of: 2000:01 for Canada, China and the UK; 2001:01 for
France; 2005:03 for Brazil; 2007:04 for Korea; 2008:05 for India;
2009:10 for Germany; 2012:12 for Japan, and; 2018:07 for South Africa.
As HICP data for Australia are only available at a quarterly frequency,
the corresponding analysis covered 2000:Q1-2023:Q4, with monthly
values for local and global CPUs averaged over 3 months.

Table 1 provides a detailed summary of the descriptive statistics and
preliminary tests for inflation rates and the various CPU indexes. The
table is organized into 3 panels, each offering distinct empirical insights
that are crucial for selecting the appropriate econometric framework for
analyzing the climate-inflation nexus. The first panel captures the
inflation dynamics across countries, with Brazil, India, and South Africa
(representative emerging economies) exhibiting relatively higher mean
inflation rates. The inflation series are predominantly positively skewed
and leptokurtic, except for South Africa and South Korea, respectively.
Unit root tests, including Augmented Dickey-Fuller (ADF; Dickey and
Fuller, 1979) and Phillips-Perron (PP; Phillips and Perron, 1988), largely
fail to reject the null hypothesis of a unit root, suggesting that inflation is
non-stationary. Additionally, strong evidence of heteroscedasticity and
serial correlation implies the need to address these violations to ensure
consistent and efficient inference.

In Panels 2 and 3, substantial cross-country heterogeneity is
observed in the climate policy uncertainty (CPU) series. Apart from
Australia, most countries exhibit CPU indicators with positive skewness
and excess kurtosis, indicating non-normality and potential outliers. The
stationarity tests uniformly reject the null of non-stationarity at the 1 %
level, affirming that these series are stationary. Similarly, the global
climate policy uncertainty proxies (GCPU, GCPU-EQ, and GCPU-GDP)
show consistent statistical features (right skewness, leptokurtosis, and
confirmed stationarity). Across both panels, the presence of conditional
heteroscedasticity and serial dependence further substantiates the need
for an estimation approach that accommodates non-constant variance
and dynamic error structures.

These stylized features (non-normality, conditional hetero-
scedasticity, and temporal correlation) are common across the dataset.
Therefore, the FQGLS estimator is recommended for subsequent
modelling (Westerlund and Narayan, 2012; 2015), as it explicitly ac-
counts for heteroscedasticity and serial correlation, thereby improving
the efficiency and reliability of parameter estimates in the context of
climate transition-inflation analysis. The outline of the methodology is
what we turn to next in Section 3.

3. Methodology

Guided by the inherent characteristics of the dataset, we adopt a
FQGLS estimation framework that accounts for key data features,
notably the presence of heteroscedasticity and autocorrelation of vary-
ing lag orders. To mitigate conditional heteroscedasticity, we implement
a pre-weighting procedure using the inverse of the standard deviation of
residuals obtained from an initial OLS estimation of the same model
specification. The resulting FQGLS model is formally represented in Eq.
(1) as follows:

inf, = a+ p unc, , + SAunc, + & (€8]

5 See Table Al of Ma et al. (2024).
6 The interested reader is referred to Table A2 in Ma et al. (2024).
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where inf; is the country-specific inflation rate at time t; unc; represents
the climate policy uncertainty measures (country-specific CPU, GCPU,
GCPU-GDP and GCPU-EQ) at time t; « is the constant;  denotes the slope
coefficients associated with the incorporated climate policy uncertainty
proxy; é is incorporated to account to any inherent bias associated with
the presence of persistence effect in unc,; while ¢, is the residual term
that follows a white noise process. A more detailed derivation is pre-
sented in Appendix B.

To formally evaluate the relative forecast performance of our climate
policy uncertainty-augmented FQGLS model against a restricted
benchmark, the historical average model, we implement the Clark and
West (2007); CW) test, which is specifically designed for nested model
comparisons. The historical average serves as the conventional bench-
mark in these pairwise evaluations. The CW test adjusts for the potential
overfitting bias inherent in nested model comparisons, providing a
robust framework to assess whether our augmented model yields sta-
tistically significant improvements in forecast accuracy. The null hy-
pothesis posits no improvement in predictive performance, that is, the
expected squared forecast error difference is zero. The CW test statistic is
derived from the adjusted mean squared error differential, formally
expressed in Eq. (2) below.

-?Hh = (rt+h - ?lt‘wh)z - [(rwh - ?Zt.wh)z - (,r\lt.wh - ?2t.t+h)2} ()]

where h is the forecast period; (re.p — ?hﬂh)z and (ren — ?ztﬁh)z are
the squared residuals from the benchmark-historical average model
(restricted) and our climate policy uncertainty-based predictive FQGLS

model (unrestricted), respectively; while (Fipen— ?Zm+h)2 is an
adjusted squared residual that is peculiar to the Clark and West test and
incorporated as a corrective measure for the noisy forecasts of the larger

model. The term, ?t ,n is defined as MSE; — (MSE; — adj.), where
_ ~ 2 _ ~ 2 .

MSE; = P! > (rt+h - r1t<t+h) , MSE; = P! > (rt+h - rzr,r+h) , adj. =

Pty (?1t,f+h - ?zLHh)z and P represents the number of averaged fore-

cast points. The test is based on the regression of ft .+, ON a constant and
the determination of equality, or otherwise, of paired contending fore-
cast errors using the t-statistic of the estimated constant. A statistically
significant t-value indicates that the unrestricted model, augmented
with climate policy uncertainty measures, yields superior forecast ac-
curacy compared to the restricted benchmark model (i.e., the historical
average). Conversely, an insignificant result implies no measurable
improvement in predictive performance, thus failing to reject the null
hypothesis of equal forecast accuracy across the competing specifica-
tions.

To answer the question of whether global metrics of CPUs matter
more than the country-specific variant for the forecasting of the inflation
rates of the 12 countries under consideration, we adopt the modified-
Diebold-Mariano test proposed by Harvey et al. (1997); DM*), as spec-
ified in Eq. (3). This test extends the conventional Diebold and Mariano
(1995); DM) framework, formulated in Eq. (4), making it more suitable
for comparing paired non-nested models. The statistical formulations for
these tests are provided in Egs. (3) and (4).

DM — \/T+172h+TT*1h(h71) DM @)
DM = 4 N(0,1) )
T J/V(@/T ’

where DM* denotes the modified DM statistic; T represents the number
of the out-of-sample periods of the forecast errors and h represents the

forecast horizon; d = 1 /T[Zledt] indicates the average of the loss

differential, d, = g(ex) — g(¢t); &(ew) and g(e;) are loss functions
(squares of the forecast errors (¢; and &, respectively) from the paired
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Table 1
Summary statistics and preliminary analyses.
Country Descriptive Statistics Unit Root Tests Heteroscedasticity Test Serial Correlation
Mean Standard Skewness Kurtosis Nobs ADF PP ARCH(6) ARCH(12) Q(6) Q(12)
Deviation
Panel 1: Country-Specific Inflation Rate
Australia 2.86 1.53 1.20 4.40 9 -2.83" -3.10" 0.04
Brazil 6.13 2.56 1.33 5.52 288 -3.04° -3.18"° 13.38""
Canada 2.19 1.37 1.41 6.32 288 -2.20° -3.24"° 0.70
China 2.06 1.88 0.80 3.97 288 -2.96" -3.55"" 1.15 4.94""
France 1.67 1.28 1.37 5.59 288 -1.60° -2.35° 3.32"" 401"
Germany 1.86 1.62 2.13 8.36 288 -3.57"P -2.65" 23.76"" 13.81"""
India 6.05 2.57 0.88 3.56 288 -1.85% -2.64% 1.32 .
Japan 0.31 1.24 1.06 4.00 288 -2.92° -3.07° 0.42 4,93
South Korea 2.47 1.34 0.28 2.53 288 -2.26" -2.83° 1.14 3.55""
South Africa 5.13 2.44 -0.08 4.64 288 -2.60% -3.45™" 13.16™" 14.41"""
UK 2.39 1.73 2.13 7.85 288 -2.83" -2.65" 12,25
US1 2.52 1.74 1.00 5.11 288 -3.07° -2.98" 7.48™"
Us2 2.77 1.57 0.73 4.84 451 -3.45""P -3.43"P 8.05"" 13.08™"
Panel 2: Country-Specific Climate Policy Uncertainty
Australia 1.57 0.81 0.58 2.85 9 -4.01""° -7.46""P 3.24" 1.61
Brazil 1.26 1.00 1.57 6.37 226 -2.85" -10.47"® 1.06 1.81"
Canada 1.12 1.00 1.54 5.57 288 3617 412,917 11.19™ 6.10""
China 1.23 1.00 1.54 5.94 288 -6.88""2 11247 5.89"" 510"
France 1.36 1.00 1.42 4.10 276 -2.20° -8.517"P 11.82"" 6.80"""
Germany 1.49 1.00 1.11 3.65 171 -3.54"P -10.77"® 243" 1.57
India 1.48 1.00 1.37 6.89 188 -11.368"" 11682 8.95™" 510"
Japan 0.63 1.00 1.47 4.13 133 -11.68"7° -11.717"" 275" 1.65%
South Korea 1.05 1.00 1.85 6.72 201 -6.35""P -10.617"® 454" 401"
South Africa 1.82 1.00 0.81 3.21 66 -6.03""P -5.917" 1.55 1.03
UK 2.12 1.00 0.81 3.42 288 412,03 -12.02"® 1.28 1.95"
Us1 1.59 1.00 0.94 4.79 288 -6.617"P -11.42" 1155 7.03""
US2 107.31 62.47 1.75 6.54 451 -5.24""P 12237 14.23" 8.91""
Panel 3: Predictors - Global Climate Policy Uncertainty Proxies
GCPU 100.00 43.87 0.96 3.68 288 -5.82""P 9,57 6.39"" 3.53""
GCPU-EQ 100.00 42.83 0.81 3.19 288 -6.38""P -9.87"" 2,94 1.78%
GCPU-GDP 100.00 43.39 0.98 3.66 288 -5.97"""P -9.94""P 474" 2.65""

Note: The table includes summary statistics (mean, standard deviation, skewness,

and kurtosis) and preliminary analysis (unit root tests, heteroscedasticity tests, and

tests for first- and higher-order serial correlation). The null hypothesis for the ADF and PP tests is a unit root; hence, rejecting the null for either test implies that the
series is stationary. The superscripts "a" and "b" denote the models with constant-only and constant-and-trend, respectively. On the heteroscedasticity test, the null
hypothesis asserts homoscedasticity, and as such, rejection of the null hypothesis would imply the presence of heteroscedasticity at the specified lags. The null hy-
pothesis for the serial correlation test is that there is no serial correlation; thus, rejecting the null hypothesis would imply the presence of serial correlation. Al, the

"

superscript "c" attached to some of the serial correlation test values indicates that a higher-order, rather than a first-order, serial correlation was observed at the
specified lags. *, " and ~ indicate statistical significance of the corresponding test at 10 %, 5 % and 1 %, respectively and implies rejection of the stated null. In Panel
2, US1 indicates the CPU for the US from Gavriilidis (2021), and US2 indicates the CPU based on Ji et al. (2024) and Ma et al. (2024).

competing models); while V(d;) is the unconditional variance of the loss
differential d;. The DM* test null hypothesis asserts equality in the
forecast precision of the paired non-nested contending models (Hy : d =
0) against a mutually exclusive alternative, (H; : d # 0). The null hy-
pothesis is retained when both models exhibit statistically indistin-
guishable forecast accuracy, whereas its rejection implies a significant
difference in their predictive performances. The direction of the DM*
statistic informs model preference: a negative value favours the FQGLS
specification incorporating global CPU variants, while a positive value
supports the country-specific CPU-based model.

By way of robustness of our findings for the US, we also consider the
CPU-inflation predictive nexus from a MIDAS model framework,
whereby the monthly inflation rate is forecasted using weekly local and
global CPUs. We specify a MIDAS regression model using the Expo-
nential Almon lag polynomial. The model is given in Eq. (6) as:

k-1

infi™ = a+/iZexp(j€)1 +j202)-uncff,/f +e 5)
=0

where inf{"™ is the monthly inflation rate at time ¢, and unc" /s repre-

sents the specific weekly CPU at lag j, with f indicating the number of
weeks per month. The term Z]":ol exp(jé1 +j02) defines the exponential
Almon weighting scheme, where the parameters 6; and 6, flexibly
control the shape and decay of the lag weights across k weekly lags,
ensuring positivity and interpretability. The scalar § captures the mar-
ginal effect of the weighted US- or global-CPU on inflation, while ¢, is a
mean-zero error term. This specification avoids arbitrary aggregation of
high-frequency data and effectively models persistence or delayed ef-
fects of CPU shocks. The exponential Almon lag is parsimonious and
reduces overfitting, while preserving essential dynamics, making it ideal
for mixed-frequency macroeconomic forecasting. The MIDAS model was
pre-weighted with the inverse of the standard deviation, in a manner
similar to the FQGLS approach. As with the same frequency framework,
the CW test statistic is utilized to check whether the local- and global-
CPU based MIDAS models outperforms the historical average model.

For forecast evaluation, the dataset is partitioned into a 75:25
ratio—where 75 % supports in-sample estimation, and 25 % is reserved
for out-of-sample forecasts over 3-, 6-, and 12-month horizons.
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Table 2
Out-of-sample forecast evaluation results for the US using the Clark-West Test.
Model h=3 h=6 h =12
Panel A: Benchmark model is Historical Average
CPU 3.2067""" 3.2755™" 3.3267""
[0.2792] [0.2796] [0.2757]
Panel B: Benchmark model is DACI+ 8 Factors-based Model
DACI+ 8 Factors+CPU 2.61E-03* 2.66E-03* 2.57E-03*
[1.41E-03] [1.40E-03] [1.38E-03]

Note: The figures in the table represent the Clark-West (CW) test statistics, along
with the corresponding standard errors in square brackets. Statistical signifi-
cance is denoted at 1 % and 10 % levels, respectively, by " and *. Significantly
positive statistics indicate that the US CPU-based predictive FQGLS model out-
performs the panel-named models (the historical average model in Panel A and
the DACI+8 factors-based FQGLS model in Panel B), which serve as the
benchmark. The forecast evaluation is performed for three forecast horizons (h):
3-, 6-, and 12-month ahead.

4. Empirical results

In this section, we first provide the same- and mixed-frequency re-
sults for the US, before turning to the findings for the 11 other countries.

4.1. Main findings for the US

Table 2 compares the forecasting accuracy of the CPU-based FQGLS
model with the historical average model (Panel A) and the FQGLS model
that includes a measure of physical risks of climate change and 8
financial and macroeconomic factors extracted from a large data set of
134 monthly economic indicators of the US, relative to the nested model
that excludes the CPU.

Note that, in line with the existing literature, here the CPU refers to
the index of Gavriilidis (2021). As for the metric for physical risks, we
use the Actuaries Climate Index (ACI), developed by the Actuarial So-
ciety of the US.” The ACI is an aggregate indicator of the frequency of
severe weather (high and low temperatures, heavy rainfall, drought
(consecutive dry days), and high wind, with all based on gridded data at
the resolution of 2.5 by 2.5 ° latitude and longitude), and the extent of
sea level rise (using tidal gauge station data). The non-stationarity of this
index, implies that we work with the first-difference of this variable
(daci). PCA analysis is used to extract 8 factors (f) from the FRED-MD
database (McCracken and Ng, 2016), wherein we ensure that we
exclude the CPI data.® Note that, the FRED-MD database includes in-
dustrial production, weekly hours, personal inventories, monetary ag-
gregates, interest rates and interest-rate spreads, stock prices, and
consumer expectations, and hence, includes both demand- and
supply-side predictors, widely used in the forecasting literature. So
formally, the extended model, relative to Eq. (1), with daci and 8 f;s over
and above the CPU can be written as follows:

8
inf, = a+ p unc, 1 + dAunc, + ¢daci, 1 + Z Yifie1 + & 6)
i=1

All the definitions for the parameters, variables and the error struc-
ture as in the original model in Eq. (1) remain.

The forecast evaluation results across all three forecast horizons
reveal that the CW test statistics are consistently positive and statisti-
cally significant at the 1 % and 10 % levels, respectively (see results in
Panels A and B in Table 2). This indicates that the US CPU-based FQGLS
model, without controls and when augmented with control variables,
consistently outperforms both benchmark models: historical average

7 The data can be downloaded from: https://actuariesclimateindex.
org/data/.

8 The whole dataset is available at: https://research.stlouisfed.org/econ/
mccracken/freddatabases/.
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Table 3
Out-of-sample forecast evaluation results for the US using Clark-West Test
(Benchmark model: Historical Average).

Horizon CPU GCPU GCPU-GDP GCPU-EQ

h=3 2.77E+ 00" 2.79E+ 00" 2.77E+ 00" 2.77E+ 00"
[2.83E-01] [2.84E-01] [2.85E-01] [2.83E-01]

h=6 2.73E+ 00" 2.76E+ 00" 2.74E+ 00" 2.73E+ 00"
[2.80E-01] [2.81E-01] [2.81E-01] [2.80E-01]

h =12 2.67E+ 00" 2.69E+ 00" 2.67E+ 00" 2.67E+ 00"
[2.74E-01] [2.75E-01] [2.75E-01] [2.74E-01]

Note: The figures in the table represent the Clark-West (CW) test statistics, along
with the corresponding standard errors in square brackets. Statistical signifi-
cance is denoted at 1 % level by . Significantly positive statistics indicate that
the US CPU-based predictive FQGLS model outperforms the historical average
model, which serves as the benchmark. The forecast evaluation is performed for
three forecast horizons (h): 3-, 6-, and 12-month ahead.

and FQGLS with DACI and financial and macroeconomic factors, in
forecasting accuracy, thus enforcing the robust predictive strength of the
CPU across various horizons in forecasting inflation. Overall, the find-
ings provide strong statistical evidence that the CPU carries important
forward-looking signals for predicting US inflation.” This result can be
used to argue for integrating climate risk indicators into mainstream
inflation forecasting frameworks, as they offer meaningful improve-
ments in forecast precision across prediction horizons, especially in the
context of monetary policy decisions. This is more so given that the full-
sample estimates of CPU in the two models considered above were
positive (0.0058 and 0.0050) and statistically significant at the 1 %
level.”

4.2. Additional results for the US: Same- and mixed-frequency

In Table 3 and Table 4, we present our findings using the alternative
narrower CPU index of Ji et al. (2024) and Ma et al. (2024) as a matter of
robustness, and also analyze the performance of the 3 GCPUs, with the
benchmark models of historical average and the own-country CPU,
respectively.

The following outcomes are evident: i) Based on the CW tests sta-
tistics, the proposed FQGLS model is superior to the historical across all
the forecast horizons, regardless of whether own- or global-CPU is
considered; imperatively, as depicted in Table 3, CPU indexes contain
valuable forward-looking information for US inflation forecasts,
emphasizing again the need to include of climate risk variables in the US
inflation modelling framework. ii) Drawing on the modified Diebold-
Mariano (DM*) test results reported in Table 4, the forecasting perfor-
mance for inflation involving the 3 GCPUs cannot significantly outper-
form the same using the country-specific CPU across the different

° As CPU is likely to be capturing the transition risks component of climate
change, as an additional analysis, we conducted a forecasting exercise for the
US using the four indicators associated with Global Warming (GW), Natural
Disasters, US Climate Policy (USCP), and international Summits (IS), as derived
from textual and narrative analysis of Reuters climate-change news by Faccini
et al. (2023). GW and ND represent physical risks, while USCP and IS capture
transition risks. Based on data over the period of 2001:01-2025:01, the results
presented in Table Al in the Appendix of the paper provides statistically sig-
nificant (at the 1 % level under the CW test statistics) evidence of forecastability
of inflation, relative to the benchmark of historical average, emanating from
GW, ND, USCP and IS, suggesting the important role of both types of climate
risks in shaping the future path of inflation rate in the US. Note that the daily
climate risk indicators of Faccini et al. (2023), which we average to a monthly
frequency for our estimations, are available at: https://sites.google.com/si
te/econrenatofaccini/home/research?authuser=0.

10 daci also carried a positive coefficient of 0.7430, which was significant at
the 5 % level, highlighting, in line with the literature, that physical risks is also
inflationary.


https://actuariesclimateindex.org/data/
https://actuariesclimateindex.org/data/
https://research.stlouisfed.org/econ/mccracken/freddatabases/
https://research.stlouisfed.org/econ/mccracken/freddatabases/
https://sites.google.com/site/econrenatofaccini/home/research?authuser=0
https://sites.google.com/site/econrenatofaccini/home/research?authuser=0
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Table 4

Out-of-sample forecast evaluation results using modified Diebold-Mariano Test (Benchmark model: US CPU-based model).
Horizons GCPU GCPU-GDP GCPU-EQ
h=3 0.6098 -0.4313 -0.5687
h=6 0.5206 -0.5227 -0.5855
h =12 0.4399 -0.5861 -0.6105

Note: The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that the forecast precision of our global climate policy
uncertainty model is equal to that of the country-specific variant (benchmark) models. The sign associated with the DM* statistics determines the direction of out-
performance. A positive result indicates that the US CPU-based FQGLS model outperforms the global variants-based FQGLS models, while a significantly negative
result indicates the converse. Non-significance, as in this case, indicates that there is no significant difference between the US and global CPU measures. The forecast

evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month ahead.

Table 5
Out-of-sample forecast evaluation results for the US using the Clark-West Test in
the MIDAS model (Benchmark model: Historical Average).

Predictors h=3 h=6 h =12

US CPU 1.08E-02"" [4.92E- 1.07E-02"" [4.87E- 1.15E-02"" [4.81E-
03] 03] 03]

GCPU 1.44E-02""" [5.20E- 1.53E-02""" [5.19E-  1.52E-02""" [5.09E-
03] 03] 03]

GCPU-EQ 4.01E-03* [2.17E- 4.21E-03* [2.15E- 3.68E-03* [2.13E-
03] 03] 03]

GCPU- 1.36E-02"" [5.45E- 1.50E-02""" [5.48E-  1.40E-02"" [5.40E-

GDP 03] 03] 03]

Note: The figures in each cell represent the estimated Clark-West (CW) test
statistics, along with their standard errors in square brackets, and statistical
significance at 1 %, 5 %, and 10 % levels, denoted by ***, ** and *, respec-
tively. Significantly positive CW statistics indicate that models incorporating the
row predictors are preferred to the historical-average model, serving as the
benchmark; while significantly negative CW statistics imply the converse. Non-
significance would imply that the predictor-based MIDAS models do not differ
markedly from the historical average model in forecast precision. The forecast
evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month
ahead.

horizons (h = 3-, 6- and 12-month-ahead). This finding tends to suggest
that the information content of the global-level climate policies-related
uncertainties is already contained in the US CPU, thus resulting in
insignificant forecasting gains across the local versus global compari-
sons. In other words, both the US-based CPU and the 3 global CPUs
perform equally well in forecasting the inflation rate, and serve as
substitutable predictors.

Next, we turn our focus to robustness based on the mixed-frequency
analysis, to ensure that temporal aggregation of high-frequency, i.e.,
weekly, values of the local and global CPUs to corresponding monthly
values does not impact the forecasting results for US inflation. Table 5
presents the forecast evaluation using the CW test for MIDAS models,
with the historical average serving as the benchmark. Across all the 3
forecast horizons, significantly positive CW statistics are found for both
the US and global CPUs serving as predictors for the inflation rate, thus
confirming that the uncertainty-based models consistently outperform
the benchmark. Notably, the FQGLS-type adjusted MIDAS models
incorporating higher-frequency climate uncertainty proxies, such as
CPU, GCPU, and GCPU-GDP, exhibit strong and statistically significant
gains in forecast accuracy, particularly with GCPU and GCPU-GDP
having the highest CW values at the 1 % significance level, while for
CPU, significance holds at the 5 % level. The GCPU-EQ-based MIDAS
model improves forecast precision, although the improvement is weakly
significant at the 10 % level. These results confirm that incorporating

high-frequency measures of climate-related uncertainty into inflation
forecasting frameworks yields significant predictive advantages over
traditional models based on historical averages. This supports the rele-
vance of climate risk indicators as forward-looking inputs and highlights
the value of frequency-aligned FQGLS-type adjusted MIDAS models in
enhancing the reliability of inflation forecasts. At the same time, we
show that aggregating the CPU metric to lower frequencies does not
affect its forecasting performance for the US inflation rate.

In addition, we assessed the robustness of our results by examining
how the predictive framework responds when we juxtapose the perfor-
mance of the FQGLS estimator with that of the conventional OLS spec-
ification. This exercise reinforces the central conclusion that our
preferred model consistently outperforming the OLS alternative that
fails to accommodate salient inherent data features. As reported in
Table A4, our adopted model’s structure and its explicit treatment of
salient statistical features confer both stability and methodological su-
periority over competing estimators.

4.3. International evidence

Having provided robust evidence of the role of own- and global CPUs
in forecasting the US inflation rate, we now extend the analysis to an
international context involving 11 other countries for the sake of
generalization of our findings.

Across the 7 advanced countries and horizons, the CW test statistics
are positive and significant at the 1 % level, affirming that the climate-
uncertainty-based FQGLS model consistently outperforms the bench-
mark in terms of forecast precision, as shown in Table 6. This observa-
tion is evident across all four predictors: CPU, GCPU, GCPU-GDP, and
GCPU-EQ, i.e., both local and global CPUs, as in the case of the US. A
similar pattern holds for the 4 examined emerging economies, all of
which show highly significant and positive CW test statistics across the
specified horizons and predictors. Importantly, CPU, both domestic and
global, contains valuable forward-looking information for inflation
forecasts across both advanced and emerging economies.'! This statis-
tical analysis supports the inclusion of climate risk variables in global
inflation modelling frameworks.

But as in the case of the US, one can observe from the modified
Diebold-Mariano (DM*) test results reported in Table 7, the forecasting

11 As in the case of the US, in Table Al in the Appendix of the paper, a
forecasting analysis based on the Physical Risks Index (PRI) and Transition
Risks Index (TRI), as developed by Bua et al. (2024) by using textual analysis of
Reuters climate-change news, confirms that both types of risks matter statisti-
cally (at the 1 % level of significance of the CW test statistics) in forecasting the
inflation rate of the European Union (EU) over the period of 2005:01-2023:12.
The HICP of EU is again sourced from the MEI database of the OECD to compute
the year-on-year inflation rate, while the daily PRI and TRI data, converted to
monthly data by averaging for our purpose, is available for download from: htt
ps://sites.google.com/view/lavinia-rognone-library/research-impact-data?
authuser=0.


https://sites.google.com/view/lavinia-rognone-library/research-impact-data?authuser=0
https://sites.google.com/view/lavinia-rognone-library/research-impact-data?authuser=0
https://sites.google.com/view/lavinia-rognone-library/research-impact-data?authuser=0
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Table 6
International out-of-sample forecast evaluation results using Clark-West Test (Benchmark model: Historical Average).

Horizon CPU GCPU GCPU_GDP GCPU_EQ

Panel A: Advanced Economies

Australia h=3 1.28E+ 00" [3.15E-01] 1.60E+ 00" [4.21E-01] 1.46E+ 00™"" [3.66E-01] 1.22E+ 00" [3.03E-01]
h=6 1.29E+ 00" [3.11E-01] [4.15E-01] 1.46E+ 00" [3.61E-01] 1.22E+ 00" [2.98E-01]
h =12 1.31E+ 00" [3.03E-01] [4.04E-01] 1.47E+ 00" [3.52E-01] 1.24E+ 00" [2.91E-01]

Canada h=3 1.21E+ 00" [1.35E-01] 1.22E+ 00" [1.36E-01] 1.22E+ 00" [1.36E-01] 1.20E+ 00" [1.34E-01]
h=6 1.20E+ 00" [1.34E-01] 1.21E+ 00" [1.34E-01] 1.21E+ 00" [1.35E-01] 1.19E+ 00" [1.32E-01]
h=12 1.18E+ 00" [1.30E-01] 1.19E+ 00" [1.31E-01] 1.19E+ 00™"" [1.32E-01] 1.17E+ 00" [1.29E-01]

France h=3 1.31E+ 00" [1.11E-01] 1.31E+ 00" [1.11E-01] 1.31E+ 00" [1.11E-01] 1.32E+ 00" [1.11E-01]
h=6 1.31E+ 00" [1.09E-01] 1.30E+ 00" [1.10E-01] 1.30E+ 00" [1.10E-01] 1.31E+ 00" [1.10E-01]
h=12 1.28E+ 00" [1.07E-01] 1.27E+ 00" [1.08E-01] 1.27E+ 00" [1.07E-01] 1.28E+ 00" [1.07E-01]

Germany h=3 6.98E-01""" [8.11E-02] 7.08E-01""" [8.09E-02] 7.32E-01""" [8.39E-02] 6.82E-01""" [7.87E-02]
h=6 7.84E-01""" [9.40E-02] 7.93E-01""" [9.39E-02] 8.20E-01""" [9.74E-02] 7.65E-01""" [9.14E-02]
h =12 7.91E-01""" [9.20E-02] 7.98E-01""" [9.15E-02] 8.26E-01""" [9.50E-02] 7.72E-01""" [8.94E-02]

Japan h=3 1.99E+ 00" [3.25E-01] 1.99E+ 00" [3.27E-01] 2.00E+ 00" [3.29E-01] 2.04E+ 00" [3.33E-01]
h=6 1.98E+ 00" [3.16E-01] 1.98E+ 00" [3.18E-01] 1.99E+ 00™"" [3.20E-01] " [3.23E-01]
h=12 1.90E+ 00™" [3.01E-01] 1.89E+ 00" [3.03E-01] 1.90E+ 00™"" [3.05E-01] " [3.08E-01]

South Korea h=3 3.22E+ 00" [3.20E-01] 3.14E+ 00" [3.07E-01] 3.15E+ 00" [3.09E-01] " [3.21E-01]
h=6 3.27E+ 00" [3.15E-01] 3.18E+ 00" [3.03E-01] 3.19E+ 00" [3.04E-01] 3.28E+ 00" [3.16E-01]
h =12 3.35E+ 00" [3.06E-01] 3.27E+ 00" [2.95E-01] 3.28E+ 00" [2.96E-01] 3.36E+ 00" [3.07E-01]

UK h=3 1.49E+ 00" [1.39E-01] 1.50E+ 00" [1.41E-01] 1.52E+ 00" [1.42E-01] 1.50E+ 00" [1.40E-01]
h=6 1.47E+ 00™" [1.38E-01] 1.48E+ 00" [1.39E-01] 1.51E+ 00" [1.41E-01] 1.48E+ 00" [1.39E-01]
h=12 1.43E+ 00" [1.35E-01] 1.45E+ 00™"" [1.36E-01] 1.47E+ 00" [1.38E-01] 1.45E+ 00" [1.36E-01]

Panel B: Emerging Economies

Brazil h=3 5.86E+ 00" [6.54E-01] 5.85E+ 00" [6.54E-01] 5.85E+ 00" [6.54E-01] 5.87E+ 00" [6.56E-01]

=6 5.95E+ 00" [6.45E-01] 5.93E+ 00" [6.45E-01] 5.94E+ 00" [6.45E-01] 5.95E+ 00" [6.46E-01]

h =12 6.29E+ 00" [6.29E-01] [6.29E-01] 6.28E+ 00" [6.29E-01]

China h=3 7.68E+ 00" [8.36E-01] [8.38E-01] 7.63E+ 00" [8.27E-01]
h=6 7.58E+ 00" [8.27E-01] 7.61E+ 00" [8.28E-01] 7.53E+ 00" [8.17E-01] 7.51E+ 00" [8.14E-01]
h =12 7.38E+ 00" [8.09E-01] 7.41E+ 00" [8.11E-01] 7.33E+ 00" [8.00E-01] 7.31E+ 00" [7.96E-01]

India h=3 1.49E+ 01" [1.59E+ 00] [1.59E+ 00] 1.49E+ 01" [1.58E+ 00]
h=6 1.48E+ 01" [1.56E+ 00] [1.56E+ 00] 1.47E+ 01" [1.55E+ 00]
h=12 1.47E+ 01" [1.50E+ 00] 1.47E+ 01" [1.50E+ 00] 1.46E+ 01""" [1.49E+ 00] 1.47E+ 01""" [1.50E+ 00]

South Africa h=3 3.48E+ 00" [7.26E-01] 3.54E+ 00" [7.39E-01] 3.54E+ 00" [7.39E-01] 3.56E+ 00" [7.46E-01]
h=6 4.06E+ 00" [7.63E-01] 4.14E+ 00" [7.77E-01] 4.13E+ 00" [7.77E-01] 4.17E+ 00" [7.86E-01]
h=12 4.22E+ 00" [7.13E-01] 4.30E+ 00" [7.27E-01] 4.29E+ 00" [7.27E-01] 4.34E+ 00" [7.36E-01]

Note: The figures in the table represent the Clark and West statistics, along with the corresponding standard errors in square brackets. Statistical significance is denoted
at the 1 % level by ", Significantly positive results indicate that our climate policy-uncertainty-based predictive FQGLS model outperforms the historical-average
benchmark model. The forecast evaluation is performed for three different forecast horizons: 3, 6, and 12 months ahead.

performance for inflation involving the 3 GCPUs perform equally as well
compared to the country-specific CPUs across the different horizons (h =
3-, 6- and 12-month-ahead), barring the case of Germany at h =12,
where global-level uncertainties related to climate policy do tend to
matter more. In sum, the information content of local and global CPUs is
equally important for forecasting the inflation rates of 11 other econo-
mies, consistent with the evidence for the US.'?

12 As additional analyses over the period of 2001:01-2023:12, we also
analyzed the ability of combined information from provincial- and city-level
CPU data for China, obtained using PCA on the CPUs of 31 provinces and
293 cities respectively, on the national inflation rate. In this regard, we first use
the CW test statistics to compare the predictive ability of an alternative
national-level CPU of China, as well as the PCA-based provincial and city-level
CPU indices, all of which are developed by Ma et al. (2023) using deep learning
on Chinese news data, in forecasting inflation relative to the benchmark model
of historical average. As shown in Table A2 in the Appendix, the CPU-based
models consistently outperform the historical average at the 1 % level of sig-
nificance, suggesting the importance of information on the uncertainty sur-
rounding climate policies at the aggregate and regional levels for Chinese
inflation. However, as with the comparison between local- and global-CPUs for
the 12 economies, the DM* test results in Table A3 in the Appendix depict equal
performance of national, provincial, and city-level CPUs in forecasting the
overall inflation rate of China. Note that the CPU indexes of Ma et al. (2023) are
available at http://www.cnefn.com/data/download/climate-risk-database/
and are based on 6 newspapers instead of 1, as in Ji et al. (2024) and Ma et al.
(2024). In the process, we also provide robustness for the results of China re-
ported in Table 6, using a broader national-level CPU.

5. Conclusion

This study examines the usefulness of CPU in forecasting the rate of
inflation in the US over the monthly period of 1987:05-2024:11. We use
FQGLS to estimate single- and multiple-factor models, with the latter
also controlling for physical risks and the information of a large number
of financial and macroeconomic variables summarized through PCA, for
the CPU-inflation predictability nexus in the US. Our findings reveal that
the CPU-based predictive regression model outperformed the historical
mean benchmark in a statistically significant manner at the 1 % level,
with a significant forecasting gain observed at the 10 % level when CPU
was added to the multi-factor benchmark. The predictive superiority of
CPU, at the 1 % level of significance, relative to the historical mean
continues to be robust across alternative local and global metrics of
climate policy-related uncertainties, as well as in a mixed-frequency
setup that used weekly CPU data to forecast monthly US inflation.
Moreover, the importance of local- and global-CPUs is also found to be
statistically significant at the 1 % level relative to the historical mean
model when forecasting inflation rates for 11 other advanced and
emerging countries. We further find that own-country and global CPUs
performed equally well, in the sense of insignificant test statistics of
forecast comparison, for forecasting inflation. In other words, local and
global CPUs are perfectly substitutable as predictors of forecast country-
level inflation across the 12 economies considered.

This study finds that CPU significantly improves inflation forecasting
accuracy across various models and country settings, indicating that
CPU has become an important forward-looking signal for inflation.
Therefore, when a positive CPU shock occurs, monetary authorities need
to adopt a contractionary policy stance in the short run to prevent future
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Table 7
Out-of-sample forecast evaluation results using modified Diebold-Mariano Test (Benchmark model: Country-specific CPU-based model).

Countries Horizons GCPU GCPU_GDP GCPU_EQ

Advanced Economies

Australia h=3 0.5929 -0.0549 0.1574
h=6 0.5685 -0.0532 0.0351
h =12 0.5274 -0.0533 0.0003

Canada h=3 0.1654 -0.0505 -0.3637
h=6 0.0024 -0.1574 -0.5883
h =12 -0.0893 -0.2074 -0.6604

France h=3 0.1307 -0.0303 0.6035
h=6 0.4552 0.2882 1.0826
h =12 -0.0909 -0.2241 0.0957

Germany h=3 0.6344 0.3460 1.7409*
h=6 0.5915 -0.2565 2.0478"
h =12 0.7891 -0.1364 1.9932"

Japan h=3 -0.1123 0.0811 0.2131
h=6 -0.1430 0.0232 0.1924
h =12 0.4112 0.4650 0.0305

South Korea h = -1.1758 -1.2962 -0.3513
h = -1.0664 -1.1497 -0.1238
h =12 -1.2573 -1.3631 -0.6246

UK h=3 -1.0108 -0.8783 -1.8913
h= -0.9848 -0.8701 -1.8277
h =12 -0.9865 -0.8635 -1.7956

us h = 0.6098 -0.4313 -0.5687
h=6 0.5206 -0.5227 -0.5855
h =12 0.4399 -0.5861 -0.6105

Emerging Economies

Brazil h=3 -0.0894 -0.4779 0.5561
h=6 0.4773 -0.0257 0.3743
h =12 -0.3000 -0.2613 1.1430

China h=3 0.0536 0.0974 0.8773
h=6 0.1602 0.1525 0.7955
h =12 -0.1832 -0.1324 0.6718

India h=3 -0.7466 -0.6410 -0.8644
h=6 -0.6524 -0.5051 -0.6551
h =12 -0.3794 -0.2007 -0.5427

South Africa h=3 0.0238 0.3783 0.0983
h=6 -0.0071 0.3102 0.1378
h =12 0.4077 0.6080 0.6901

Note: The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that the forecast precision of our global climate policy
uncertainty model is equal to that of the country-specific variant (benchmark) models. Statistical significance is denoted at the 5 % and 10 % levels by *" and *,
respectively. The sign associated with the DM* statistics determines the direction of outperformance. A positive result indicates that the country-specific CPU-based
FQGLS model outperforms the global variants-based FQGLS models, while a significantly negative result indicates the converse. Non-significance, as in this case,
indicates that there is no significant difference between the country-specific and global CPU measures. The forecast evaluation is performed for three forecast horizons

(h): 3-, 6-, and 12-month ahead.

inflationary pressures. But increases in CPU, accompanied by economic
contraction, imply that a firm and clear climate policy stance is desired
from the ruling government in the first place to reduce the uncertainty
and its adverse macroeconomic impacts (Cepni et al., 2025). Central
banks should incorporate CPU into their inflation monitoring and fore-
casting frameworks, using scenario analysis and expanded indicator sets
to improve the identification of future price dynamics. Meanwhile, given
the substitutability between domestic and global CPU in forecasting
performance, countries should enhance the transparency and stability of
their climate policies to reduce the inflationary pressures arising from
cross-border uncertainty spillovers. For emerging economies in partic-
ular, strengthening energy diversification and exchange rate stabiliza-
tion mechanisms can help mitigate the impact of global CPU fluctuations
on domestic price levels.

As part of future research, contingent on data availability, it would
be interesting to analyze the role of state-level CPUs within the US (and
other countries, if possible), given the heterogeneity in climate-related

policies across the states (Trachtman, 2020), and lack of convergence
in price levels (Christou et al., 2019), in forecasting their corresponding
inflation rates.
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Appendix
Table Al
Out-of-Sample Forecast Evaluation Results using Clark-West Test (Benchmark model: Historical Average)
Predictors Out-of-Sample Forecast
h=3 h=6 h=12
European Union (EU)
PRI 2.13E+ 00" [1.92E-01] 2.09E+ 00" [1.89E-01] 2.10E+ 00" [1.84E-01]
TRI 2.08E+ 00" [1.87E-01] 2.04E+ 00" [1.85E-01] 2.04E+ 00" [1.79E-01]
GW 2.64E+ 00" [2.69E-01] 2.58E+ 00" [2.63E-01]
IS 2.63E+ 00 [2.69E-01] 2.57E+ 00 B [2.64E-01]
ND 2.65E+ 00" [2.73E-01] 2.62E+ 00" [2.70E-01] 2.56E+ 00" [2.64E-01]
USCP 2.66E+ 00 [2.73E-01] 2.63E+ 00 " [2.70E-01] 2.57E+ 00 [2.64E-01]
Note: PRI: Physical Risks Index; TRI: Transition Risks Index; GW: Global Warming; IS: International Summits; ND: Natural Disasters;
USCP: US Climate Policies. The figures in the table represent the Clark-West statistics, along with the corresponding standard errors in
square brackets. Statistical significance is denoted at the 1 % level by . Significantly positive results indicate that our climate policy-
uncertainty-based predictive FQGLS model outperforms the historical-average benchmark model. The forecast evaluation is performed
for three different forecast horizons: 3, 6, and 12 months ahead.
Table A2
Out-of-Sample Forecast Evaluation Results for China using Clark-West Test (Benchmark model: Historical Average)
Predictors Out-of-Sample Forecast
h=3 h=6 h=12
CPU 7.69E+ 00" [8.40E-01] 7.59E+ 00" [8.31E-01] 7.39E+ 00" [8.12E-01]
City-CPU 7.61E+ 00_ " [8.31E-01] 7.51E+ 00~ [8.21E-01] 7.31E+ 0 ) [8.04E-01]
Province-CPU 7.63E+ 00" [8.32E-01] 7.53E+ 00" [8.23E-01] 7.33E+ 00" [8.05E-01]
Note: CPU: National Chinese CPU; City-CPU: PCA of 293 CPU of Chinese cities CPU; Province-CPU: PCA of 31 CPU of Chinese provinces.
The figures in the table represent the Clark-West test statistics, along with the corresponding standard errors in square brackets. Statistical
significance is denoted at the 1 % level by = . Significantly positive results indicate that our climate policy-uncertainty-based predictive
FQGLS model outperforms the historical-average benchmark model. The forecast evaluation is performed for three different forecast ho-
rizons: 3, 6, and 12 months ahead.
Table A3

Out-of-Sample Forecast Evaluation Results for China using Modified Diebold-Mariano Test

Horizons Panel A: Panel B:
Benchmark (CPU-based model) Benchmark (City CPU-based model)

City-CPU vs CPU Province-CPU vs CPU Province-CPU vs City-CPU

h =3 0.4042 0.1781 -0.4159
h=6 0.4271 0.2645 -0.3117
h =12 0.3178 0.0788 -0.4288

Note: See Notes to Table A2. The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that
the forecast precision of our Chinese City- and Province-based CPU model is equal to that of the national CPU variant (benchmark) model in
Panel A; and that the forecast precision of our Chinese Province-CPU model is equal to that of the Chinese City-CPU variant (benchmark)
model. The sign associated with the DM* statistics determines the direction of outperformance. A positive result indicates that the
benchmark CPU-based FQGLS model outperforms the contending variants-based FQGLS models, while a significantly negative result in-
dicates the converse. Non-significance, as is the case here, denotes that there is no distinctive precision between the contending model
variants. The forecast evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month ahead.

Table A4
Out-of-Sample Forecast Evaluation Results using Clark and West Test (Benchmark model: OLS-based model)

Horizons CPU GCPU GCPU-GDP GCPU-EQ
h=3 2.6632""" 2.7108"" 2.6782"""
h=6 2.6299" 2.6778"" 2.6590
h=12 2.5644"" 2.6103""" 2.6129"""

Note: The figures in each cell are the Clark and West test statistics. The null hypothesis asserts that the forecast precision of
the variants of our climate policy uncertainty model (FQGLS) is equal to that of the alternative model (OLS) that ignores the
inherent salient features (the benchmark). The sign associated with the Clark-West statistics determines the direction of
outperformance. Significantly positive statistics indicate that the US CPU-based predictive FQGLS model outperforms the
OLS-based alternative model, which serves as the benchmark. The forecast evaluation is performed for three forecast
horizons (h): 3-, 6-, and 12-month ahead.
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Appendix B. On the Feasible-Quasi Generalized Least Squares Estimator

Suppose that the original predictive model is defined as follows:

infe = p+puncey +v; v ~N(0,0) (B

where inf, and unc,_; are as previously defined. Let’s assume that the uncertainty measure exhibits some degree of persistence; which implies that any
shock to the uncertainty measure tends to persist (Usman et al., 2023):

une, = §+punc, s +&; & ~N(0,0%) (B2)

Premised on the assumption of persistence in (B2), it is expected that the two disturbances (v, and &,) will be correlated, and therefore, the issue of
endogeneity bias becomes relevant. To capture any inherent endogeneity bias as well as persistence implied in Eq. (B2), the equation relating the two
disturbances is defined as:

v=y&te (B3)

Note that v, = inf, —u —punc, , from Eq. (B1) and &, = unc, —¢ —p unc,_; from Eq. (B2). By way of substitution and rearrangement, I can rewrite Eq.
(B3) as:

inf, = a+ punc,_ 1 +y(unc, —punc, 1) +é& (B4)

where a =y — ¢by. Eq. (B4) is the same as Eq. (1) in the main text. The additional term in (B4) relative to (B1) captures the inherent endogeneity bias as
well persistence effect in the predictive model.
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