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A B S T R A C T

We investigate the predictive content of climate policy uncertainty (CPU) for forecasting the inflation rate of the 
United States (US) over the monthly period of 1987:05–2024:11. We evaluate the performance of our proposed 
CPU-based predictive model, estimated via the Feasible Quasi Generalized Least Squares (FQGLS) approach, 
against a historical average benchmark model, with the FQGLS technique adopted to account for hetero
scedasticity and autocorrelation in the data. We find statistical evidence in favour of a CPU-based model relative 
to the benchmark, as well as in the case of an extended model involving physical risks of climate change and 
financial and macroeconomic factors, extracted from a large data set, when CPU is included. The predictive 
superiority of climate policy-related uncertainties relative to the historical mean remains robust across alter
native local and global CPU metrics, as well as in a mixed-frequency setup, given the availability of high- 
frequency (weekly) CPU data. Moreover, the importance of local- and global-CPUs is also found to hold for 
forecasting the inflation rates of 11 other advanced and emerging countries, in a statistically significant manner 
relative to the historical average model. Across all 12 economies, own- and global-CPUs perform equally well in 
forecasting the respective inflation rates. The general importance of uncertainties surrounding policy decisions to 
tackle climate change in shaping the future path of inflation, understandably, carries implications for the 
monetary authority.

1. Introduction

In recent years, the intensification of climate risks has become a 
critical global concern, with extreme weather events, ranging from 
heatwaves and heavy precipitation to powerful windstorms, occurring 
with increasing frequency and severity (AghaKouchak et al., 2020), and 
hence, imposing a large aggregate risk to the economy (Giglio et al., 
2021). Although major economies have pledged to address climate 
change, uncertainty surrounding the formulation and implementation of 
climate policies continues to rise and has become an important factor 
influencing macroeconomic outcomes (Ilhan et al., 2020; Ma et al., 
2023).

Against this backdrop, a key yet insufficiently explored question is 
whether Climate Policy Uncertainty (CPU) provides forward-looking 
information with incremental value for forecasting future inflation. 
Huang and Teresa Punzi (2024) develop an environmental DSGE model 

calibrated to the United States. They show that heightened climate 
policy uncertainty reduces physical capital by prompting firms to post
pone investment, thereby lowering employment, consumption, and 
output, thereby generating an inflationary effect. These authors also 
empirically verify the theoretical implications associated with higher 
inflation following a positive shock to a newspaper-based index of 
climate policy uncertainty (CPU), as developed by Gavriilidis (2021), for 
the US using a Bayesian Vector Autoregressive (BVAR) model. Similar 
inflationary effects of CPU have been documented for the US and other 
economies around the world by Moessner (2022), Doğan (2023), 
Chaâbane (2024), and Akshaya and Gopalakrishna (2025). However, 
this evidence is primarily based on in-sample analyses, whereas mone
tary policy relies more heavily on out-of-sample forecasting perfor
mance. Therefore, determining whether the CPU can enhance inflation 
forecasts is of considerable importance for central banks and 
policymakers.
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In light of this requirement, we analyze the role of the CPU index of 
Gavriilidis (2021), as generally used by the abovementioned in-sample 
analyses, in predicting the inflation rate of the US, but from the 
perspective of forecasting, over the monthly period of 
1987:05–2024:11. To check for the robustness of our findings, we also 
utilize an alternative newspapers articles-based CPU index data devel
oped by Ji et al. (2024) and Ma et al. (2024) to perform a forecasting 
analysis of monthly US inflation covering 2000:01–2023:12.

The advantage of using these two studies is multi-dimensional: 
Firstly, besides the US, Ji et al. (2024) and Ma et al. (2024), also de
velops the CPU indexes for 11 other advanced (Australia, Canada, 
France, Germany, Japan, South Korea, and the United Kingdom (UK)) 
and emerging (Brazil, China, India, and South Africa) countries, thus 
allowing us to extend our analysis to a global dimension, and hence, 
generalize our findings. Secondly, these authors also develop 3 global 
CPU (GCPU) indexes, as weighted averages of the 12 country-specific 
CPUs, involving equal weights, and the same based on current prices 
Gross Domestic Product (GDP), and purchasing power parity (PPP)-ad
justed GDP. This enables us to also analyze the role of the global CPU 
indexes in forecasting the inflation rates of the 12 economies, given 
evidence of a general trend of rising co-movement of uncertainty 
involving climate-related policies across major economies of the world 
post the Paris Climate Agreement in 2015 (Challinor et al., 2017, 2018; 
Lin and Zhao, 2023) as they try to embark on the path of the so-called 
“green energy transition” (Bettarelli et al., 2025). Naturally, one 
would expect the GCPUs, capturing the CPUs of all the countries in our 
sample, to also indirectly influence local-inflation, as they might contain 
information of inflation spillovers and connectedness due to trade 
linkages and alignment of monetary policy decisions (Al-Nassar and 
Albahouth, 2023), Lastly, in addition to the monthly indexes of CPU, 
these two papers also makes available daily and weekly values of the 
same. Given this, and the fact that averaging high-frequency data to 
low-frequency can result in loss of information (Clements and Galvão, 
2008), we utilize the weekly local and global indexes in a Mixed Data 
Sampling (MIDAS) framework (Ghysels et al., 2007), to check for the 
degree of robustness of our results for the US derived under the fore
casting exercise obtained with the monthly version of these indexes.1

Moreover, the theoretical channels through which the CPU affects 
inflation have become increasingly clear in the literature. First, higher 
policy uncertainty raises firms' expected volatility regarding future en
ergy policies, carbon taxes, and regulatory costs, prompting them to 
postpone investment. This slows capital accumulation, constrains sup
ply, and ultimately puts upward pressure on prices (Huang & Punzi, 
2024). Second, CPU significantly influences commodity market
s—particularly the oil market—by increasing risk premia and ampli
fying oil price volatility (Guo et al., 2022; Li, 2022). The transmission of 
higher energy costs then feeds into both producer prices and consumer 
prices. Third, CPU induces exchange rate volatility (Peng et al., 2023; 
Afshan et al., 2023), thereby raising imported inflation, with even 
stronger effects in more open economies.

In summary, this paper makes four key contributions. First, while 
existing studies primarily focus on structural models or in-sample effects 
within VAR frameworks, this paper is the first to systematically examine 
the forward-looking impact of CPU on inflation from an out-of-sample 
forecasting perspective, covering the United States and 11 major 
advanced and emerging economies. Second, by employing CPU indices 
from multiple sources, we document that domestic CPU and global CPU 
are substitutable for forecasting inflation, providing new empirical ev
idence on the cross-country synchronization and risk transmission of 
climate policy uncertainty. Third, we incorporate FQGLS and MIDAS 
into the climate–inflation forecasting framework, which not only 

effectively addresses heteroskedasticity and autocorrelation but also 
fully exploits high-frequency weekly CPU information to forecast 
monthly inflation. Finally, we construct an extended model by ac
counting for the effects of extreme weather (Liao et al., 2024; Sheng 
et al., 2022b; Kim et al., 2025) and a wide set of financial and macro
economic variables (Stock & Watson, 2002, 2009), augmenting the 
forecasting specification with physical-risk indicators and eight 
macro-financial factors extracted via PCA. This allows us to assess 
whether CPU retains incremental predictive value after controlling for 
key climate and macroeconomic drivers.

The remainder of the paper is organized as follows: Section 2 outlines 
the data; Section 3 presents the methodology; Section 4 discusses the 
results; and Section 5 provides the conclusions.

2. Data issues

As far as the inflation data is concerned for the US, as well as the 11 
other countries, we utilize the year-on-year first-differences of the nat
ural logarithmic values of the Harmonized Index of Consumer Prices 
(HICP) expressed in percentages (i.e., multiplied by 100), with the HICP 
obtained from the Main Economic Indicator (MEI) database of the 
Organisation for Economic Co-operation and Development (OECD).2

In terms of the CPU data for the US associated with the longer sample 
period of the forecasting exercise, i.e., 1987:05–2024:11, we rely on the 
index created by Gavriilidis (2021).3 To construct the CPU index, the 
author searches for articles in eight leading US newspapers (Boston 
Globe, Chicago Tribune, Los Angeles Times, Miami Herald, New York 
Times, Tampa Bay Times, USA Today and the Wall Street Journal) which 
contain at least one keywords in all three categories of: (1) Climate, (2) 
Policy, and, (3) Uncertainty. Specifically, the terms searched for are: 
“uncertainty” or “uncertain” and “carbon dioxide” or “climate” or 
“climate risk” or “greenhouse gas emissions” or “greenhouse” or “CO2” 
or “emissions” or “global warming” or “climate change” or “green en
ergy” or “renewable energy” or “environmental” and “regulation” or 
“legislation” or “White House” or “Congress” or “EPA” or “law” or 
“policy” (including variants such as: “uncertainties”, “regulatory”, 
“policies”, etc.). For each newspaper, the number of relevant articles per 
month is scaled with the total number of articles during the same month, 
with these eight series then standardized to have a unit standard devi
ation and then averaged across newspapers by month. Finally, the 
averaged series are normalized to have a mean value of 100 for the 
period April 1987 to August 2022.

In the papers by Ji et al. (2024) and Ma et al. (2024), the same 
approach as Gavriilidis (2021) was followed for the US, but restricted to 
searches of the Wall Street Journal, as in Engle et al. (2020). Though 
restricted in terms of newspaper coverage, these authors provide daily 
and weekly versions of the US CPU, which we use to conduct a 
MIDAS-based forecasting analysis of the corresponding inflation rate, 
thereby providing an advantage for our analysis. The data coverage for 
the US in this case runs from 2000:01–2023:12.

In addition, as stated earlier, these two studies also construct (daily, 
weekly and monthly) indexes of CPU for 11 other advanced and 
emerging countries, as well as 3 global indexes based on weighted av
erages of the 12 countries under 3 different weighting schemes: equal 
weights (GCPU-EQ), current prices GDP (GCPU), and PPP-adjusted GDP 
(GCPU-GDP).4 Note that, for the 11 other countries, Ji et al. (2024) and 
Ma et al. (2024) perform most searches in the native language, if not 

1 Unfortunately, we observed convergence issues in the MIDAS model with 
the daily CPU data for the US and with both the daily and weekly CPU indexes 
for the other 11 countries, due to a large number of zeros.

2 See: https://www.oecd.org/en/publications/serials/main-economic-indic 
ators_g1g11c1c.html.

3 The data can be downloaded from: https://policyuncertainty.com/clima 
te_uncertainty.html.

4 Data for the 12 countries at the three frequencies can be accessed from: 
http://www.cnefn.com/data/download/climate-risk-database/.
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available in English, of the specific important newspaper5 chosen for 
these economies, by utilizing climate policy white papers from the 
Intergovernmental Panel on Climate Change (IPCC) and national cli
mate/environmental authorities to construct a vocabulary for terms 
related to climate, policy and uncertainty.6

Given the availability of the CPU of the 11 other countries and the 
GCPU indexes at the time of writing this paper, while all data ended in 
2023:12, the forecasting exercise for inflation covered heterogeneous 
starting periods of: 2000:01 for Canada, China and the UK; 2001:01 for 
France; 2005:03 for Brazil; 2007:04 for Korea; 2008:05 for India; 
2009:10 for Germany; 2012:12 for Japan, and; 2018:07 for South Africa. 
As HICP data for Australia are only available at a quarterly frequency, 
the corresponding analysis covered 2000:Q1–2023:Q4, with monthly 
values for local and global CPUs averaged over 3 months.

Table 1 provides a detailed summary of the descriptive statistics and 
preliminary tests for inflation rates and the various CPU indexes. The 
table is organized into 3 panels, each offering distinct empirical insights 
that are crucial for selecting the appropriate econometric framework for 
analyzing the climate-inflation nexus. The first panel captures the 
inflation dynamics across countries, with Brazil, India, and South Africa 
(representative emerging economies) exhibiting relatively higher mean 
inflation rates. The inflation series are predominantly positively skewed 
and leptokurtic, except for South Africa and South Korea, respectively. 
Unit root tests, including Augmented Dickey-Fuller (ADF; Dickey and 
Fuller, 1979) and Phillips-Perron (PP; Phillips and Perron, 1988), largely 
fail to reject the null hypothesis of a unit root, suggesting that inflation is 
non-stationary. Additionally, strong evidence of heteroscedasticity and 
serial correlation implies the need to address these violations to ensure 
consistent and efficient inference.

In Panels 2 and 3, substantial cross-country heterogeneity is 
observed in the climate policy uncertainty (CPU) series. Apart from 
Australia, most countries exhibit CPU indicators with positive skewness 
and excess kurtosis, indicating non-normality and potential outliers. The 
stationarity tests uniformly reject the null of non-stationarity at the 1 % 
level, affirming that these series are stationary. Similarly, the global 
climate policy uncertainty proxies (GCPU, GCPU-EQ, and GCPU-GDP) 
show consistent statistical features (right skewness, leptokurtosis, and 
confirmed stationarity). Across both panels, the presence of conditional 
heteroscedasticity and serial dependence further substantiates the need 
for an estimation approach that accommodates non-constant variance 
and dynamic error structures.

These stylized features (non-normality, conditional hetero
scedasticity, and temporal correlation) are common across the dataset. 
Therefore, the FQGLS estimator is recommended for subsequent 
modelling (Westerlund and Narayan, 2012; 2015), as it explicitly ac
counts for heteroscedasticity and serial correlation, thereby improving 
the efficiency and reliability of parameter estimates in the context of 
climate transition-inflation analysis. The outline of the methodology is 
what we turn to next in Section 3.

3. Methodology

Guided by the inherent characteristics of the dataset, we adopt a 
FQGLS estimation framework that accounts for key data features, 
notably the presence of heteroscedasticity and autocorrelation of vary
ing lag orders. To mitigate conditional heteroscedasticity, we implement 
a pre-weighting procedure using the inverse of the standard deviation of 
residuals obtained from an initial OLS estimation of the same model 
specification. The resulting FQGLS model is formally represented in Eq. 
(1) as follows: 

inft = α+ β unct− 1 + δΔunct + εt (1) 

where inft is the country-specific inflation rate at time t; unct represents 
the climate policy uncertainty measures (country-specific CPU, GCPU, 
GCPU-GDP and GCPU-EQ) at time t; α is the constant; β denotes the slope 
coefficients associated with the incorporated climate policy uncertainty 
proxy; δ is incorporated to account to any inherent bias associated with 
the presence of persistence effect in unct; while εt is the residual term 
that follows a white noise process. A more detailed derivation is pre
sented in Appendix B.

To formally evaluate the relative forecast performance of our climate 
policy uncertainty–augmented FQGLS model against a restricted 
benchmark, the historical average model, we implement the Clark and 
West (2007); CW) test, which is specifically designed for nested model 
comparisons. The historical average serves as the conventional bench
mark in these pairwise evaluations. The CW test adjusts for the potential 
overfitting bias inherent in nested model comparisons, providing a 
robust framework to assess whether our augmented model yields sta
tistically significant improvements in forecast accuracy. The null hy
pothesis posits no improvement in predictive performance, that is, the 
expected squared forecast error difference is zero. The CW test statistic is 
derived from the adjusted mean squared error differential, formally 
expressed in Eq. (2) below. 

f̂ t+h =
(
rt+h − r̂1t,t+h

)2
−
[(

rt+h − r̂2t,t+h
)2

−
(
r̂1t,t+h − r̂2t,t+h

)2] (2) 

where h is the forecast period; 
(
rt+h − r̂1t,t+h

)2 and 
(
rt+h − r̂2t,t+h

)2 are 
the squared residuals from the benchmark–historical average model 
(restricted) and our climate policy uncertainty-based predictive FQGLS 
model (unrestricted), respectively; while 

(
r̂1t,t+h − r̂2t,t+h

)2 is an 
adjusted squared residual that is peculiar to the Clark and West test and 
incorporated as a corrective measure for the noisy forecasts of the larger 
model. The term, f̂ t+h is defined as MSE1 − (MSE2 − adj.), where 

MSE1 = P− 1 ∑(
rt+h − r̂1t,t+h

)2, MSE2 = P− 1 ∑(
rt+h − r̂2t,t+h

)2, adj. =

P− 1 ∑(
r̂1t,t+h − r̂2t,t+h

)2 and P represents the number of averaged fore

cast points. The test is based on the regression of ̂f t+h on a constant and 
the determination of equality, or otherwise, of paired contending fore
cast errors using the t-statistic of the estimated constant. A statistically 
significant t-value indicates that the unrestricted model, augmented 
with climate policy uncertainty measures, yields superior forecast ac
curacy compared to the restricted benchmark model (i.e., the historical 
average). Conversely, an insignificant result implies no measurable 
improvement in predictive performance, thus failing to reject the null 
hypothesis of equal forecast accuracy across the competing specifica
tions.

To answer the question of whether global metrics of CPUs matter 
more than the country-specific variant for the forecasting of the inflation 
rates of the 12 countries under consideration, we adopt the modified- 
Diebold-Mariano test proposed by Harvey et al. (1997); DM*), as spec
ified in Eq. (3). This test extends the conventional Diebold and Mariano 
(1995); DM) framework, formulated in Eq. (4), making it more suitable 
for comparing paired non-nested models. The statistical formulations for 
these tests are provided in Eqs. (3) and (4). 

DM∗ =

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T + 1 − 2h + T− 1h(h − 1)

T

√ ⎞

⎠DM (3) 

DM =
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(d)/T

√ ∼ N(0, 1) (4) 

where DM∗ denotes the modified DM statistic; T represents the number 
of the out-of-sample periods of the forecast errors and h represents the 

forecast horizon; d = 1/T
[∑T

t=1dt

]
indicates the average of the loss 

differential, dt ≡ g(εit) − g
(
εjt
)
; g(εit) and g

(
εjt
)

are loss functions 
(squares of the forecast errors (εit and εjt, respectively) from the paired 

5 See Table A1 of Ma et al. (2024).
6 The interested reader is referred to Table A2 in Ma et al. (2024).
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competing models); while V(dt) is the unconditional variance of the loss 
differential dt. The DM* test null hypothesis asserts equality in the 
forecast precision of the paired non-nested contending models (H0 : d =
0) against a mutually exclusive alternative, (H1 : d ∕= 0). The null hy
pothesis is retained when both models exhibit statistically indistin
guishable forecast accuracy, whereas its rejection implies a significant 
difference in their predictive performances. The direction of the DM* 
statistic informs model preference: a negative value favours the FQGLS 
specification incorporating global CPU variants, while a positive value 
supports the country-specific CPU-based model.

By way of robustness of our findings for the US, we also consider the 
CPU-inflation predictive nexus from a MIDAS model framework, 
whereby the monthly inflation rate is forecasted using weekly local and 
global CPUs. We specify a MIDAS regression model using the Expo
nential Almon lag polynomial. The model is given in Eq. (6) as: 

infmnt
t = α+ β

∑k− 1

j=0
exp

(
jθ1 + j2θ2

)
⋅uncwk

t− τ/f + εt (5) 

where infmnt
t is the monthly inflation rate at time t, and uncwk

t− τ/S repre

sents the specific weekly CPU at lag j, with f indicating the number of 
weeks per month. The term 

∑k− 1
j=0 exp

(
jθ1 +j2θ2

)
defines the exponential 

Almon weighting scheme, where the parameters θ1 and θ2 flexibly 
control the shape and decay of the lag weights across k weekly lags, 
ensuring positivity and interpretability. The scalar β captures the mar
ginal effect of the weighted US- or global-CPU on inflation, while εt is a 
mean-zero error term. This specification avoids arbitrary aggregation of 
high-frequency data and effectively models persistence or delayed ef
fects of CPU shocks. The exponential Almon lag is parsimonious and 
reduces overfitting, while preserving essential dynamics, making it ideal 
for mixed-frequency macroeconomic forecasting. The MIDAS model was 
pre-weighted with the inverse of the standard deviation, in a manner 
similar to the FQGLS approach. As with the same frequency framework, 
the CW test statistic is utilized to check whether the local- and global- 
CPU based MIDAS models outperforms the historical average model.

For forecast evaluation, the dataset is partitioned into a 75:25 
ratio—where 75 % supports in-sample estimation, and 25 % is reserved 
for out-of-sample forecasts over 3-, 6-, and 12-month horizons.

Table 1 
Summary statistics and preliminary analyses.

Country Descriptive Statistics Unit Root Tests Heteroscedasticity Test Serial Correlation

Mean Standard 
Deviation

Skewness Kurtosis Nobs ADF PP ARCH(6) ARCH(12) Q(6) Q(12)

Panel 1: Country-Specific Inflation Rate
Australia 2.86 1.53 1.20 4.40 96 -2.83*a -3.10**a 0.04 9.03*** 2.48 19.10***

Brazil 6.13 2.56 1.33 5.52 288 -3.04b -3.18*b 13.38*** 10.64*** 169.98*** 233.58***

Canada 2.19 1.37 1.41 6.32 288 -2.20b -3.24*b 0.70 3.21*** 11.59* 80.40***

China 2.06 1.88 0.80 3.97 288 -2.96**a -3.55***a 1.15 4.94*** 12.90** 105.00***

France 1.67 1.28 1.37 5.59 288 -1.60b -2.35b 3.32*** 4.01*** 18.48*** 62.20***

Germany 1.86 1.62 2.13 8.36 288 -3.57**b -2.65b 23.76*** 13.81*** 18.05*** 71.63***

India 6.05 2.57 0.88 3.56 288 -1.85a -2.64a 1.32 2.75*** 26.12*** 84.34***

Japan 0.31 1.24 1.06 4.00 288 -2.92b -3.07b 0.42 4.93*** 11.74* 80.09***

South Korea 2.47 1.34 0.28 2.53 288 -2.26b -2.83b 1.14 3.55*** 11.76* 70.60***

South Africa 5.13 2.44 -0.08 4.64 288 -2.60a -3.45**a 13.16*** 14.41*** 124.65*** 212.78***

UK 2.39 1.73 2.13 7.85 288 -2.83b -2.65b 15.24*** 12.25*** 61.67*** 99.57***

US1 2.52 1.74 1.00 5.11 288 -3.07b -2.98b 5.01*** 7.48*** 55.84*** 86.82***

US2 2.77 1.57 0.73 4.84 451 -3.45**b -3.43**b 8.05*** 13.08*** 79.96*** 196.13***

Panel 2: Country-Specific Climate Policy Uncertainty
Australia 1.57 0.81 0.58 2.85 96 -4.01**b -7.46***b 3.24** 1.61 10.29*** 12.43**

Brazil 1.26 1.00 1.57 6.37 226 -2.85*a -10.47***b 1.06 1.81** 31.22*** 51.70***

Canada 1.12 1.00 1.54 5.57 288 -3.61**b -12.91***b 11.19*** 6.10*** 63.10*** 81.39***

China 1.23 1.00 1.54 5.94 288 -6.88***a -11.24***b 5.89*** 5.10*** 30.54*** 44.32***

France 1.36 1.00 1.42 4.10 276 -2.20b -8.51***b 11.82*** 6.80*** 40.14*** 47.36***

Germany 1.49 1.00 1.11 3.65 171 -3.54**b -10.77***b 2.43** 1.57 42.23*** 50.90***

India 1.48 1.00 1.37 6.89 188 -11.368**b -11.68***a 8.95*** 5.10*** 25.12***c 28.20***c

Japan 0.63 1.00 1.47 4.13 133 -11.68***b -11.71***a 2.75** 1.65* 10.36 21.64**

South Korea 1.05 1.00 1.85 6.72 201 -6.35***b -10.61***b 4.54*** 4.01*** 23.28*** 48.86***

South Africa 1.82 1.00 0.81 3.21 66 -6.03***b -5.91***b 1.55 1.03 15.04** 25.02**

UK 2.12 1.00 0.81 3.42 288 -12.03***b -12.02***b 1.28 1.95** 18.16*** 42.65***

US1 1.59 1.00 0.94 4.79 288 -6.61***b -11.42***b 11.55*** 7.03*** 23.84*** 39.38***

US2 107.31 62.47 1.75 6.54 451 -5.24***b -12.23***b 14.23*** 8.91*** 44.97*** 75.00***

Panel 3: Predictors - Global Climate Policy Uncertainty Proxies
GCPU 100.00 43.87 0.96 3.68 288 -5.82***b -9.57***b 6.39*** 3.53*** 26.96*** 39.08***

GCPU-EQ 100.00 42.83 0.81 3.19 288 -6.38***b -9.87***b 2.94*** 1.78* 26.41*** 42.27***

GCPU-GDP 100.00 43.39 0.98 3.66 288 -5.97***b -9.94***b 4.74*** 2.65*** 27.56*** 39.80***

Note: The table includes summary statistics (mean, standard deviation, skewness, and kurtosis) and preliminary analysis (unit root tests, heteroscedasticity tests, and 
tests for first- and higher-order serial correlation). The null hypothesis for the ADF and PP tests is a unit root; hence, rejecting the null for either test implies that the 
series is stationary. The superscripts "a" and "b" denote the models with constant-only and constant-and-trend, respectively. On the heteroscedasticity test, the null 
hypothesis asserts homoscedasticity, and as such, rejection of the null hypothesis would imply the presence of heteroscedasticity at the specified lags. The null hy
pothesis for the serial correlation test is that there is no serial correlation; thus, rejecting the null hypothesis would imply the presence of serial correlation. Al, the 
superscript "c" attached to some of the serial correlation test values indicates that a higher-order, rather than a first-order, serial correlation was observed at the 
specified lags. *, ** and *** indicate statistical significance of the corresponding test at 10 %, 5 % and 1 %, respectively and implies rejection of the stated null. In Panel 
2, US1 indicates the CPU for the US from Gavriilidis (2021), and US2 indicates the CPU based on Ji et al. (2024) and Ma et al. (2024).
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4. Empirical results

In this section, we first provide the same- and mixed-frequency re
sults for the US, before turning to the findings for the 11 other countries.

4.1. Main findings for the US

Table 2 compares the forecasting accuracy of the CPU-based FQGLS 
model with the historical average model (Panel A) and the FQGLS model 
that includes a measure of physical risks of climate change and 8 
financial and macroeconomic factors extracted from a large data set of 
134 monthly economic indicators of the US, relative to the nested model 
that excludes the CPU.

Note that, in line with the existing literature, here the CPU refers to 
the index of Gavriilidis (2021). As for the metric for physical risks, we 
use the Actuaries Climate Index (ACI), developed by the Actuarial So
ciety of the US.7 The ACI is an aggregate indicator of the frequency of 
severe weather (high and low temperatures, heavy rainfall, drought 
(consecutive dry days), and high wind, with all based on gridded data at 
the resolution of 2.5 by 2.5 ◦ latitude and longitude), and the extent of 
sea level rise (using tidal gauge station data). The non-stationarity of this 
index, implies that we work with the first-difference of this variable 
(daci). PCA analysis is used to extract 8 factors (f) from the FRED-MD 
database (McCracken and Ng, 2016), wherein we ensure that we 
exclude the CPI data.8 Note that, the FRED-MD database includes in
dustrial production, weekly hours, personal inventories, monetary ag
gregates, interest rates and interest-rate spreads, stock prices, and 
consumer expectations, and hence, includes both demand- and 
supply-side predictors, widely used in the forecasting literature. So 
formally, the extended model, relative to Eq. (1), with daci and 8 fis over 
and above the CPU can be written as follows: 

inft = α+ β unct− 1 + δΔunct +ϕdacit− 1 +
∑8

i=1
γifi,t− 1 + εt (6) 

All the definitions for the parameters, variables and the error struc
ture as in the original model in Eq. (1) remain.

The forecast evaluation results across all three forecast horizons 
reveal that the CW test statistics are consistently positive and statisti
cally significant at the 1 % and 10 % levels, respectively (see results in 
Panels A and B in Table 2). This indicates that the US CPU-based FQGLS 
model, without controls and when augmented with control variables, 
consistently outperforms both benchmark models: historical average 

and FQGLS with DACI and financial and macroeconomic factors, in 
forecasting accuracy, thus enforcing the robust predictive strength of the 
CPU across various horizons in forecasting inflation. Overall, the find
ings provide strong statistical evidence that the CPU carries important 
forward-looking signals for predicting US inflation.9 This result can be 
used to argue for integrating climate risk indicators into mainstream 
inflation forecasting frameworks, as they offer meaningful improve
ments in forecast precision across prediction horizons, especially in the 
context of monetary policy decisions. This is more so given that the full- 
sample estimates of CPU in the two models considered above were 
positive (0.0058 and 0.0050) and statistically significant at the 1 % 
level.10

4.2. Additional results for the US: Same- and mixed-frequency

In Table 3 and Table 4, we present our findings using the alternative 
narrower CPU index of Ji et al. (2024) and Ma et al. (2024) as a matter of 
robustness, and also analyze the performance of the 3 GCPUs, with the 
benchmark models of historical average and the own-country CPU, 
respectively.

The following outcomes are evident: i) Based on the CW tests sta
tistics, the proposed FQGLS model is superior to the historical across all 
the forecast horizons, regardless of whether own- or global-CPU is 
considered; imperatively, as depicted in Table 3, CPU indexes contain 
valuable forward-looking information for US inflation forecasts, 
emphasizing again the need to include of climate risk variables in the US 
inflation modelling framework. ii) Drawing on the modified Diebold- 
Mariano (DM*) test results reported in Table 4, the forecasting perfor
mance for inflation involving the 3 GCPUs cannot significantly outper
form the same using the country-specific CPU across the different 

Table 2 
Out-of-sample forecast evaluation results for the US using the Clark-West Test.

Model h = 3 h = 6 h = 12

Panel A: Benchmark model is Historical Average
CPU 3.2067*** 

[0.2792]
3.2755*** 

[0.2796]
3.3267*** 

[0.2757]
Panel B: Benchmark model is DACIþ 8 Factors-based Model
DACI+ 8 Factors+CPU 2.61E-03* 

[1.41E-03]
2.66E-03* 
[1.40E-03]

2.57E-03* 
[1.38E-03]

Note: The figures in the table represent the Clark-West (CW) test statistics, along 
with the corresponding standard errors in square brackets. Statistical signifi
cance is denoted at 1 % and 10 % levels, respectively, by *** and *. Significantly 
positive statistics indicate that the US CPU-based predictive FQGLS model out
performs the panel-named models (the historical average model in Panel A and 
the DACI+8 factors-based FQGLS model in Panel B), which serve as the 
benchmark. The forecast evaluation is performed for three forecast horizons (h): 
3-, 6-, and 12-month ahead.

Table 3 
Out-of-sample forecast evaluation results for the US using Clark-West Test 
(Benchmark model: Historical Average).

Horizon CPU GCPU GCPU-GDP GCPU-EQ

h = 3 2.77E+ 00*** 

[2.83E-01]
2.79E+ 00*** 

[2.84E-01]
2.77E+ 00*** 

[2.85E-01]
2.77E+ 00*** 

[2.83E-01]
h = 6 2.73E+ 00*** 

[2.80E-01]
2.76E+ 00*** 

[2.81E-01]
2.74E+ 00*** 

[2.81E-01]
2.73E+ 00*** 

[2.80E-01]
h = 12 2.67E+ 00*** 

[2.74E-01]
2.69E+ 00*** 

[2.75E-01]
2.67E+ 00*** 

[2.75E-01]
2.67E+ 00*** 

[2.74E-01]

Note: The figures in the table represent the Clark-West (CW) test statistics, along 
with the corresponding standard errors in square brackets. Statistical signifi
cance is denoted at 1 % level by ***. Significantly positive statistics indicate that 
the US CPU-based predictive FQGLS model outperforms the historical average 
model, which serves as the benchmark. The forecast evaluation is performed for 
three forecast horizons (h): 3-, 6-, and 12-month ahead.

7 The data can be downloaded from: https://actuariesclimateindex. 
org/data/.

8 The whole dataset is available at: https://research.stlouisfed.org/econ/ 
mccracken/freddatabases/.

9 As CPU is likely to be capturing the transition risks component of climate 
change, as an additional analysis, we conducted a forecasting exercise for the 
US using the four indicators associated with Global Warming (GW), Natural 
Disasters, US Climate Policy (USCP), and international Summits (IS), as derived 
from textual and narrative analysis of Reuters climate-change news by Faccini 
et al. (2023). GW and ND represent physical risks, while USCP and IS capture 
transition risks. Based on data over the period of 2001:01–2025:01, the results 
presented in Table A1 in the Appendix of the paper provides statistically sig
nificant (at the 1 % level under the CW test statistics) evidence of forecastability 
of inflation, relative to the benchmark of historical average, emanating from 
GW, ND, USCP and IS, suggesting the important role of both types of climate 
risks in shaping the future path of inflation rate in the US. Note that the daily 
climate risk indicators of Faccini et al. (2023), which we average to a monthly 
frequency for our estimations, are available at: https://sites.google.com/si 
te/econrenatofaccini/home/research?authuser=0.
10 daci also carried a positive coefficient of 0.7430, which was significant at 

the 5 % level, highlighting, in line with the literature, that physical risks is also 
inflationary.
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horizons (h = 3-, 6- and 12-month-ahead). This finding tends to suggest 
that the information content of the global-level climate policies-related 
uncertainties is already contained in the US CPU, thus resulting in 
insignificant forecasting gains across the local versus global compari
sons. In other words, both the US-based CPU and the 3 global CPUs 
perform equally well in forecasting the inflation rate, and serve as 
substitutable predictors.

Next, we turn our focus to robustness based on the mixed-frequency 
analysis, to ensure that temporal aggregation of high-frequency, i.e., 
weekly, values of the local and global CPUs to corresponding monthly 
values does not impact the forecasting results for US inflation. Table 5
presents the forecast evaluation using the CW test for MIDAS models, 
with the historical average serving as the benchmark. Across all the 3 
forecast horizons, significantly positive CW statistics are found for both 
the US and global CPUs serving as predictors for the inflation rate, thus 
confirming that the uncertainty-based models consistently outperform 
the benchmark. Notably, the FQGLS-type adjusted MIDAS models 
incorporating higher-frequency climate uncertainty proxies, such as 
CPU, GCPU, and GCPU-GDP, exhibit strong and statistically significant 
gains in forecast accuracy, particularly with GCPU and GCPU-GDP 
having the highest CW values at the 1 % significance level, while for 
CPU, significance holds at the 5 % level. The GCPU-EQ-based MIDAS 
model improves forecast precision, although the improvement is weakly 
significant at the 10 % level. These results confirm that incorporating 

high-frequency measures of climate-related uncertainty into inflation 
forecasting frameworks yields significant predictive advantages over 
traditional models based on historical averages. This supports the rele
vance of climate risk indicators as forward-looking inputs and highlights 
the value of frequency-aligned FQGLS-type adjusted MIDAS models in 
enhancing the reliability of inflation forecasts. At the same time, we 
show that aggregating the CPU metric to lower frequencies does not 
affect its forecasting performance for the US inflation rate.

In addition, we assessed the robustness of our results by examining 
how the predictive framework responds when we juxtapose the perfor
mance of the FQGLS estimator with that of the conventional OLS spec
ification. This exercise reinforces the central conclusion that our 
preferred model consistently outperforming the OLS alternative that 
fails to accommodate salient inherent data features. As reported in 
Table A4, our adopted model’s structure and its explicit treatment of 
salient statistical features confer both stability and methodological su
periority over competing estimators.

4.3. International evidence

Having provided robust evidence of the role of own- and global CPUs 
in forecasting the US inflation rate, we now extend the analysis to an 
international context involving 11 other countries for the sake of 
generalization of our findings.

Across the 7 advanced countries and horizons, the CW test statistics 
are positive and significant at the 1 % level, affirming that the climate- 
uncertainty-based FQGLS model consistently outperforms the bench
mark in terms of forecast precision, as shown in Table 6. This observa
tion is evident across all four predictors: CPU, GCPU, GCPU-GDP, and 
GCPU-EQ, i.e., both local and global CPUs, as in the case of the US. A 
similar pattern holds for the 4 examined emerging economies, all of 
which show highly significant and positive CW test statistics across the 
specified horizons and predictors. Importantly, CPU, both domestic and 
global, contains valuable forward-looking information for inflation 
forecasts across both advanced and emerging economies.11 This statis
tical analysis supports the inclusion of climate risk variables in global 
inflation modelling frameworks.

But as in the case of the US, one can observe from the modified 
Diebold-Mariano (DM*) test results reported in Table 7, the forecasting 

Table 4 
Out-of-sample forecast evaluation results using modified Diebold-Mariano Test (Benchmark model: US CPU-based model).

Horizons GCPU GCPU-GDP GCPU-EQ

h = 3 0.6098 -0.4313 -0.5687
h = 6 0.5206 -0.5227 -0.5855
h = 12 0.4399 -0.5861 -0.6105

Note: The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that the forecast precision of our global climate policy 
uncertainty model is equal to that of the country-specific variant (benchmark) models. The sign associated with the DM* statistics determines the direction of out
performance. A positive result indicates that the US CPU-based FQGLS model outperforms the global variants-based FQGLS models, while a significantly negative 
result indicates the converse. Non-significance, as in this case, indicates that there is no significant difference between the US and global CPU measures. The forecast 
evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month ahead.

Table 5 
Out-of-sample forecast evaluation results for the US using the Clark-West Test in 
the MIDAS model (Benchmark model: Historical Average).

Predictors h = 3 h = 6 h = 12

US CPU 1.08E-02** [4.92E- 
03]

1.07E-02** [4.87E- 
03]

1.15E-02** [4.81E- 
03]

GCPU 1.44E-02*** [5.20E- 
03]

1.53E-02*** [5.19E- 
03]

1.52E-02*** [5.09E- 
03]

GCPU-EQ 4.01E-03* [2.17E- 
03]

4.21E-03* [2.15E- 
03]

3.68E-03* [2.13E- 
03]

GCPU- 
GDP

1.36E-02** [5.45E- 
03]

1.50E-02*** [5.48E- 
03]

1.40E-02** [5.40E- 
03]

Note: The figures in each cell represent the estimated Clark-West (CW) test 
statistics, along with their standard errors in square brackets, and statistical 
significance at 1 %, 5 %, and 10 % levels, denoted by ***, **, and *, respec
tively. Significantly positive CW statistics indicate that models incorporating the 
row predictors are preferred to the historical-average model, serving as the 
benchmark; while significantly negative CW statistics imply the converse. Non- 
significance would imply that the predictor-based MIDAS models do not differ 
markedly from the historical average model in forecast precision. The forecast 
evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month 
ahead.

11 As in the case of the US, in Table A1 in the Appendix of the paper, a 
forecasting analysis based on the Physical Risks Index (PRI) and Transition 
Risks Index (TRI), as developed by Bua et al. (2024) by using textual analysis of 
Reuters climate-change news, confirms that both types of risks matter statisti
cally (at the 1 % level of significance of the CW test statistics) in forecasting the 
inflation rate of the European Union (EU) over the period of 2005:01–2023:12. 
The HICP of EU is again sourced from the MEI database of the OECD to compute 
the year-on-year inflation rate, while the daily PRI and TRI data, converted to 
monthly data by averaging for our purpose, is available for download from: htt 
ps://sites.google.com/view/lavinia-rognone-library/research-impact-data? 
authuser=0.
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performance for inflation involving the 3 GCPUs perform equally as well 
compared to the country-specific CPUs across the different horizons (h =
3-, 6- and 12-month-ahead), barring the case of Germany at h = 12, 
where global-level uncertainties related to climate policy do tend to 
matter more. In sum, the information content of local and global CPUs is 
equally important for forecasting the inflation rates of 11 other econo
mies, consistent with the evidence for the US.12

5. Conclusion

This study examines the usefulness of CPU in forecasting the rate of 
inflation in the US over the monthly period of 1987:05–2024:11. We use 
FQGLS to estimate single- and multiple-factor models, with the latter 
also controlling for physical risks and the information of a large number 
of financial and macroeconomic variables summarized through PCA, for 
the CPU-inflation predictability nexus in the US. Our findings reveal that 
the CPU-based predictive regression model outperformed the historical 
mean benchmark in a statistically significant manner at the 1 % level, 
with a significant forecasting gain observed at the 10 % level when CPU 
was added to the multi-factor benchmark. The predictive superiority of 
CPU, at the 1 % level of significance, relative to the historical mean 
continues to be robust across alternative local and global metrics of 
climate policy-related uncertainties, as well as in a mixed-frequency 
setup that used weekly CPU data to forecast monthly US inflation. 
Moreover, the importance of local- and global-CPUs is also found to be 
statistically significant at the 1 % level relative to the historical mean 
model when forecasting inflation rates for 11 other advanced and 
emerging countries. We further find that own-country and global CPUs 
performed equally well, in the sense of insignificant test statistics of 
forecast comparison, for forecasting inflation. In other words, local and 
global CPUs are perfectly substitutable as predictors of forecast country- 
level inflation across the 12 economies considered.

This study finds that CPU significantly improves inflation forecasting 
accuracy across various models and country settings, indicating that 
CPU has become an important forward-looking signal for inflation. 
Therefore, when a positive CPU shock occurs, monetary authorities need 
to adopt a contractionary policy stance in the short run to prevent future 

Table 6 
International out-of-sample forecast evaluation results using Clark-West Test (Benchmark model: Historical Average).

Horizon CPU GCPU GCPU_GDP GCPU_EQ

Panel A: Advanced Economies
Australia h = 3 1.28E+ 00*** [3.15E-01] 1.60E+ 00*** [4.21E-01] 1.46E+ 00*** [3.66E-01] 1.22E+ 00*** [3.03E-01]

h = 6 1.29E+ 00*** [3.11E-01] 1.60E+ 00*** [4.15E-01] 1.46E+ 00*** [3.61E-01] 1.22E+ 00*** [2.98E-01]
h = 12 1.31E+ 00*** [3.03E-01] 1.61E+ 00*** [4.04E-01] 1.47E+ 00*** [3.52E-01] 1.24E+ 00*** [2.91E-01]

Canada h = 3 1.21E+ 00*** [1.35E-01] 1.22E+ 00*** [1.36E-01] 1.22E+ 00*** [1.36E-01] 1.20E+ 00*** [1.34E-01]
h = 6 1.20E+ 00*** [1.34E-01] 1.21E+ 00*** [1.34E-01] 1.21E+ 00*** [1.35E-01] 1.19E+ 00*** [1.32E-01]
h = 12 1.18E+ 00*** [1.30E-01] 1.19E+ 00*** [1.31E-01] 1.19E+ 00*** [1.32E-01] 1.17E+ 00*** [1.29E-01]

France h = 3 1.31E+ 00*** [1.11E-01] 1.31E+ 00*** [1.11E-01] 1.31E+ 00*** [1.11E-01] 1.32E+ 00*** [1.11E-01]
h = 6 1.31E+ 00*** [1.09E-01] 1.30E+ 00*** [1.10E-01] 1.30E+ 00*** [1.10E-01] 1.31E+ 00*** [1.10E-01]
h = 12 1.28E+ 00*** [1.07E-01] 1.27E+ 00*** [1.08E-01] 1.27E+ 00*** [1.07E-01] 1.28E+ 00*** [1.07E-01]

Germany h = 3 6.98E-01*** [8.11E-02] 7.08E-01*** [8.09E-02] 7.32E-01*** [8.39E-02] 6.82E-01*** [7.87E-02]
h = 6 7.84E-01*** [9.40E-02] 7.93E-01*** [9.39E-02] 8.20E-01*** [9.74E-02] 7.65E-01*** [9.14E-02]
h = 12 7.91E-01*** [9.20E-02] 7.98E-01*** [9.15E-02] 8.26E-01*** [9.50E-02] 7.72E-01*** [8.94E-02]

Japan h = 3 1.99E+ 00*** [3.25E-01] 1.99E+ 00*** [3.27E-01] 2.00E+ 00*** [3.29E-01] 2.04E+ 00*** [3.33E-01]
h = 6 1.98E+ 00*** [3.16E-01] 1.98E+ 00*** [3.18E-01] 1.99E+ 00*** [3.20E-01] 2.03E+ 00*** [3.23E-01]
h = 12 1.90E+ 00*** [3.01E-01] 1.89E+ 00*** [3.03E-01] 1.90E+ 00*** [3.05E-01] 1.94E+ 00*** [3.08E-01]

South Korea h = 3 3.22E+ 00*** [3.20E-01] 3.14E+ 00*** [3.07E-01] 3.15E+ 00*** [3.09E-01] 3.24E+ 00*** [3.21E-01]
h = 6 3.27E+ 00*** [3.15E-01] 3.18E+ 00*** [3.03E-01] 3.19E+ 00*** [3.04E-01] 3.28E+ 00*** [3.16E-01]
h = 12 3.35E+ 00*** [3.06E-01] 3.27E+ 00*** [2.95E-01] 3.28E+ 00*** [2.96E-01] 3.36E+ 00*** [3.07E-01]

UK h = 3 1.49E+ 00*** [1.39E-01] 1.50E+ 00*** [1.41E-01] 1.52E+ 00*** [1.42E-01] 1.50E+ 00*** [1.40E-01]
h = 6 1.47E+ 00*** [1.38E-01] 1.48E+ 00*** [1.39E-01] 1.51E+ 00*** [1.41E-01] 1.48E+ 00*** [1.39E-01]
h = 12 1.43E+ 00*** [1.35E-01] 1.45E+ 00*** [1.36E-01] 1.47E+ 00*** [1.38E-01] 1.45E+ 00*** [1.36E-01]

Panel B: Emerging Economies
Brazil h = 3 5.86E+ 00*** [6.54E-01] 5.85E+ 00*** [6.54E-01] 5.85E+ 00*** [6.54E-01] 5.87E+ 00*** [6.56E-01]

h = 6 5.95E+ 00*** [6.45E-01] 5.93E+ 00*** [6.45E-01] 5.94E+ 00*** [6.45E-01] 5.95E+ 00*** [6.46E-01]
h = 12 6.29E+ 00*** [6.29E-01] 6.27E+ 00*** [6.29E-01] 6.28E+ 00*** [6.29E-01] 6.29E+ 00*** [6.30E-01]

China h = 3 7.68E+ 00*** [8.36E-01] 7.71E+ 00*** [8.38E-01] 7.63E+ 00*** [8.27E-01] 7.61E+ 00*** [8.23E-01]
h = 6 7.58E+ 00*** [8.27E-01] 7.61E+ 00*** [8.28E-01] 7.53E+ 00*** [8.17E-01] 7.51E+ 00*** [8.14E-01]
h = 12 7.38E+ 00*** [8.09E-01] 7.41E+ 00*** [8.11E-01] 7.33E+ 00*** [8.00E-01] 7.31E+ 00*** [7.96E-01]

India h = 3 1.49E+ 01*** [1.59E+ 00] 1.49E+ 01*** [1.59E+ 00] 1.49E+ 01*** [1.58E+ 00] 1.49E+ 01*** [1.59E+ 00]
h = 6 1.48E+ 01*** [1.56E+ 00] 1.47E+ 01*** [1.56E+ 00] 1.47E+ 01*** [1.55E+ 00] 1.48E+ 01*** [1.56E+ 00]
h = 12 1.47E+ 01*** [1.50E+ 00] 1.47E+ 01*** [1.50E+ 00] 1.46E+ 01*** [1.49E+ 00] 1.47E+ 01*** [1.50E+ 00]

South Africa h = 3 3.48E+ 00*** [7.26E-01] 3.54E+ 00*** [7.39E-01] 3.54E+ 00*** [7.39E-01] 3.56E+ 00*** [7.46E-01]
h = 6 4.06E+ 00*** [7.63E-01] 4.14E+ 00*** [7.77E-01] 4.13E+ 00*** [7.77E-01] 4.17E+ 00*** [7.86E-01]
h = 12 4.22E+ 00*** [7.13E-01] 4.30E+ 00*** [7.27E-01] 4.29E+ 00*** [7.27E-01] 4.34E+ 00*** [7.36E-01]

Note: The figures in the table represent the Clark and West statistics, along with the corresponding standard errors in square brackets. Statistical significance is denoted 
at the 1 % level by ***. Significantly positive results indicate that our climate policy-uncertainty-based predictive FQGLS model outperforms the historical-average 
benchmark model. The forecast evaluation is performed for three different forecast horizons: 3, 6, and 12 months ahead.

12 As additional analyses over the period of 2001:01–2023:12, we also 
analyzed the ability of combined information from provincial- and city-level 
CPU data for China, obtained using PCA on the CPUs of 31 provinces and 
293 cities respectively, on the national inflation rate. In this regard, we first use 
the CW test statistics to compare the predictive ability of an alternative 
national-level CPU of China, as well as the PCA-based provincial and city-level 
CPU indices, all of which are developed by Ma et al. (2023) using deep learning 
on Chinese news data, in forecasting inflation relative to the benchmark model 
of historical average. As shown in Table A2 in the Appendix, the CPU-based 
models consistently outperform the historical average at the 1 % level of sig
nificance, suggesting the importance of information on the uncertainty sur
rounding climate policies at the aggregate and regional levels for Chinese 
inflation. However, as with the comparison between local- and global-CPUs for 
the 12 economies, the DM* test results in Table A3 in the Appendix depict equal 
performance of national, provincial, and city-level CPUs in forecasting the 
overall inflation rate of China. Note that the CPU indexes of Ma et al. (2023) are 
available at http://www.cnefn.com/data/download/climate-risk-database/
and are based on 6 newspapers instead of 1, as in Ji et al. (2024) and Ma et al. 
(2024). In the process, we also provide robustness for the results of China re
ported in Table 6, using a broader national-level CPU.
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inflationary pressures. But increases in CPU, accompanied by economic 
contraction, imply that a firm and clear climate policy stance is desired 
from the ruling government in the first place to reduce the uncertainty 
and its adverse macroeconomic impacts (Cepni et al., 2025). Central 
banks should incorporate CPU into their inflation monitoring and fore
casting frameworks, using scenario analysis and expanded indicator sets 
to improve the identification of future price dynamics. Meanwhile, given 
the substitutability between domestic and global CPU in forecasting 
performance, countries should enhance the transparency and stability of 
their climate policies to reduce the inflationary pressures arising from 
cross-border uncertainty spillovers. For emerging economies in partic
ular, strengthening energy diversification and exchange rate stabiliza
tion mechanisms can help mitigate the impact of global CPU fluctuations 
on domestic price levels.

As part of future research, contingent on data availability, it would 
be interesting to analyze the role of state-level CPUs within the US (and 
other countries, if possible), given the heterogeneity in climate-related 

policies across the states (Trachtman, 2020), and lack of convergence 
in price levels (Christou et al., 2019), in forecasting their corresponding 
inflation rates.
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Table 7 
Out-of-sample forecast evaluation results using modified Diebold-Mariano Test (Benchmark model: Country-specific CPU-based model).

Countries Horizons GCPU GCPU_GDP GCPU_EQ

Advanced Economies
Australia h = 3 0.5929 -0.0549 0.1574

h = 6 0.5685 -0.0532 0.0351
h = 12 0.5274 -0.0533 0.0003

Canada h = 3 0.1654 -0.0505 -0.3637
h = 6 0.0024 -0.1574 -0.5883
h = 12 -0.0893 -0.2074 -0.6604

France h = 3 0.1307 -0.0303 0.6035
h = 6 0.4552 0.2882 1.0826
h = 12 -0.0909 -0.2241 0.0957

Germany h = 3 0.6344 0.3460 1.7409*
h = 6 0.5915 -0.2565 2.0478**

h = 12 0.7891 -0.1364 1.9932**

Japan h = 3 -0.1123 0.0811 0.2131
h = 6 -0.1430 0.0232 0.1924
h = 12 0.4112 0.4650 0.0305

South Korea h = 3 -1.1758 -1.2962 -0.3513
h = 6 -1.0664 -1.1497 -0.1238
h = 12 -1.2573 -1.3631 -0.6246

UK h = 3 -1.0108 -0.8783 -1.8913
h = 6 -0.9848 -0.8701 -1.8277
h = 12 -0.9865 -0.8635 -1.7956

US h = 3 0.6098 -0.4313 -0.5687
h = 6 0.5206 -0.5227 -0.5855
h = 12 0.4399 -0.5861 -0.6105

Emerging Economies
Brazil h = 3 -0.0894 -0.4779 0.5561

h = 6 0.4773 -0.0257 0.3743
h = 12 -0.3000 -0.2613 1.1430

China h = 3 0.0536 0.0974 0.8773
h = 6 0.1602 0.1525 0.7955
h = 12 -0.1832 -0.1324 0.6718

India h = 3 -0.7466 -0.6410 -0.8644
h = 6 -0.6524 -0.5051 -0.6551
h = 12 -0.3794 -0.2007 -0.5427

South Africa h = 3 0.0238 0.3783 0.0983
h = 6 -0.0071 0.3102 0.1378
h = 12 0.4077 0.6080 0.6901

Note: The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that the forecast precision of our global climate policy 
uncertainty model is equal to that of the country-specific variant (benchmark) models. Statistical significance is denoted at the 5 % and 10 % levels by ** and *, 
respectively. The sign associated with the DM* statistics determines the direction of outperformance. A positive result indicates that the country-specific CPU-based 
FQGLS model outperforms the global variants-based FQGLS models, while a significantly negative result indicates the converse. Non-significance, as in this case, 
indicates that there is no significant difference between the country-specific and global CPU measures. The forecast evaluation is performed for three forecast horizons 
(h): 3-, 6-, and 12-month ahead.
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Appendix 

Table A1 
Out-of-Sample Forecast Evaluation Results using Clark-West Test (Benchmark model: Historical Average)

Predictors Out-of-Sample Forecast

h = 3 h = 6 h = 12

​ European Union (EU)
PRI 2.13E+ 00*** [1.92E-01] 2.09E+ 00*** [1.89E-01] 2.10E+ 00*** [1.84E-01]
TRI 2.08E+ 00*** [1.87E-01] 2.04E+ 00*** [1.85E-01] 2.04E+ 00*** [1.79E-01]
​ US
GW 2.67E+ 00*** [2.72E-01] 2.64E+ 00*** [2.69E-01] 2.58E+ 00*** [2.63E-01]
IS 2.66E+ 00*** [2.72E-01] 2.63E+ 00*** [2.69E-01] 2.57E+ 00*** [2.64E-01]
ND 2.65E+ 00*** [2.73E-01] 2.62E+ 00*** [2.70E-01] 2.56E+ 00*** [2.64E-01]
USCP 2.66E+ 00*** [2.73E-01] 2.63E+ 00*** [2.70E-01] 2.57E+ 00*** [2.64E-01]

Note: PRI: Physical Risks Index; TRI: Transition Risks Index; GW: Global Warming; IS: International Summits; ND: Natural Disasters; 
USCP: US Climate Policies. The figures in the table represent the Clark-West statistics, along with the corresponding standard errors in 
square brackets. Statistical significance is denoted at the 1 % level by ***. Significantly positive results indicate that our climate policy- 
uncertainty-based predictive FQGLS model outperforms the historical-average benchmark model. The forecast evaluation is performed 
for three different forecast horizons: 3, 6, and 12 months ahead.

Table A2 
Out-of-Sample Forecast Evaluation Results for China using Clark-West Test (Benchmark model: Historical Average)

Predictors Out-of-Sample Forecast

h = 3 h = 6 h = 12

CPU 7.69E+ 00*** [8.40E-01] 7.59E+ 00*** [8.31E-01] 7.39E+ 00*** [8.12E-01]
City-CPU 7.61E+ 00*** [8.31E-01] 7.51E+ 00*** [8.21E-01] 7.31E+ 00*** [8.04E-01]
Province-CPU 7.63E+ 00*** [8.32E-01] 7.53E+ 00*** [8.23E-01] 7.33E+ 00*** [8.05E-01]

Note: CPU: National Chinese CPU; City-CPU: PCA of 293 CPU of Chinese cities CPU; Province-CPU: PCA of 31 CPU of Chinese provinces. 
The figures in the table represent the Clark-West test statistics, along with the corresponding standard errors in square brackets. Statistical 
significance is denoted at the 1 % level by ***. Significantly positive results indicate that our climate policy-uncertainty-based predictive 
FQGLS model outperforms the historical-average benchmark model. The forecast evaluation is performed for three different forecast ho
rizons: 3, 6, and 12 months ahead.

Table A3 
Out-of-Sample Forecast Evaluation Results for China using Modified Diebold-Mariano Test

Horizons Panel A: 
Benchmark (CPU-based model)

Panel B: 
Benchmark (City CPU-based model)

City-CPU vs CPU Province-CPU vs CPU Province-CPU vs City-CPU

h = 3 0.4042 0.1781 -0.4159
h = 6 0.4271 0.2645 -0.3117
h = 12 0.3178 0.0788 -0.4288

Note: See Notes to Table A2. The figures in each cell are the modified Diebold-Mariano (DM*) test statistics. The null hypothesis asserts that 
the forecast precision of our Chinese City- and Province-based CPU model is equal to that of the national CPU variant (benchmark) model in 
Panel A; and that the forecast precision of our Chinese Province-CPU model is equal to that of the Chinese City-CPU variant (benchmark) 
model. The sign associated with the DM* statistics determines the direction of outperformance. A positive result indicates that the 
benchmark CPU-based FQGLS model outperforms the contending variants-based FQGLS models, while a significantly negative result in
dicates the converse. Non-significance, as is the case here, denotes that there is no distinctive precision between the contending model 
variants. The forecast evaluation is performed for three forecast horizons (h): 3-, 6-, and 12-month ahead.

Table A4 
Out-of-Sample Forecast Evaluation Results using Clark and West Test (Benchmark model: OLS-based model)

Horizons CPU GCPU GCPU-GDP GCPU-EQ

h = 3 2.6632*** 2.7108*** 2.7613*** 2.6782***

h = 6 2.6299*** 2.6778*** 2.7290*** 2.6590***

h = 12 2.5644*** 2.6103*** 2.6611*** 2.6129***

Note: The figures in each cell are the Clark and West test statistics. The null hypothesis asserts that the forecast precision of 
the variants of our climate policy uncertainty model (FQGLS) is equal to that of the alternative model (OLS) that ignores the 
inherent salient features (the benchmark). The sign associated with the Clark-West statistics determines the direction of 
outperformance. Significantly positive statistics indicate that the US CPU-based predictive FQGLS model outperforms the 
OLS-based alternative model, which serves as the benchmark. The forecast evaluation is performed for three forecast 
horizons (h): 3-, 6-, and 12-month ahead.
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Appendix B. On the Feasible-Quasi Generalized Least Squares Estimator

Suppose that the original predictive model is defined as follows: 

inft = μ+ βunct− 1 + νt ; νt ∼ N
(
0, σ2

v
)

(B1) 

where inft and unct− 1 are as previously defined. Let’s assume that the uncertainty measure exhibits some degree of persistence; which implies that any 
shock to the uncertainty measure tends to persist (Usman et al., 2023): 

unct = ϕ+ ρ unct− 1 + ξt ; ξt ∼ N
(

0, σ2
ξ

)
(B2) 

Premised on the assumption of persistence in (B2), it is expected that the two disturbances (νt and ξt) will be correlated, and therefore, the issue of 
endogeneity bias becomes relevant. To capture any inherent endogeneity bias as well as persistence implied in Eq. (B2), the equation relating the two 
disturbances is defined as: 

νt = γξt + εt (B3) 

Note that νt = inft − μ − βunct− 1 from Eq. (B1) and ξt = unct − ϕ − ρ unct− 1 from Eq. (B2). By way of substitution and rearrangement, I can rewrite Eq. 
(B3) as: 

inft = α+ βunct− 1 + γ(unct − ρ unct− 1)+ εt (B4) 

where α = μ − ϕγ. Eq. (B4) is the same as Eq. (1) in the main text. The additional term in (B4) relative to (B1) captures the inherent endogeneity bias as 
well persistence effect in the predictive model.

References

Afshan, S., Razi, U., Leong, K. Y., Lelchumanan, B., & Cheong, C. W. H. (2023). 
Navigating the interconnected risks in currency valuation: Unveiling the role of 
climate policy uncertainty. Environmental Science and Pollution Research, 30(58), 
122580–122600.

AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., 
Moftakhari, H., Papalexiou, S. M., Ragno, E., & Sadegh, M. (2020). Climate extremes 
and compound hazards in a warming world. Annual Review of Earth and Planetary 
Sciences, 48, 519–548.

Akshaya, A., & Gopalakrishna, B. V. (2025). Impact of climate and economic policy 
uncertainties on inflation in India: Using the vector error correction model approach. 
Asia-Pacific Journal of Regional Science, 9(2), 585–604.

Al-Nassar, N. S., & Albahouth, A. A. (2023). Inflation spillovers among advanced and 
emerging economies: Evidence from the G20 group. Economies 2023, 11(4), 126.

Bettarelli, L., Furceri, D., Pisano, L., & Pizzuto, P. (2025). Greenflation: Empirical 
evidence using macro, regional and sectoral data. European Economic Review, 174(C), 
Article 104983.

Bua, G., Kapp, D., Ramella, F., & Rognone, L. (2024). Transition versus physical climate 
risk pricing in European financial markets: A text-based approach. The European 
Journal of Finance, 30(17), 2076–2110.

Cepni, O., Gil-Alana, L. A., Gupta, R., & Polat, O. (2025). Time-variation in the 
persistence of carbon price uncertainty: The role of carbon policy uncertainty? The 
Quarterly Review of Economics and Finance, 102(C), Article 102004.
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Doğan, B.Ö. (2023). The relationship between climate policy uncertainty and inflation: 
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