
Implementing a smart city using 
internet of things based on 
wildwood combined with fractional 
order-based golden search 
algorithm
Tianlan Wang1 & Zhiwen Zhao2

The fast expansion of Internet of Things (IoT) devices in urban environments has resulted in a dramatic 
increase in both the volume and complexity of data produced, necessitating the implementation 
of sophisticated data analytics and machine learning methodologies to fully realize the advantages 
of smart cities. The incorporation of IoT sensors and devices has facilitated the establishment of 
extensive, dynamic, and diverse networks, which present considerable challenges for data analysis 
and decision-making processes. In response to these challenges, machine learning algorithms have 
surfaced as a feasible solution, capable of discerning intricate patterns and relationships within 
the data. Nonetheless, the efficacy of these algorithms is significantly influenced by the precise 
tuning of hyperparameters, a task that can be quite complicated, particularly within IoT-enabled 
smart cities. This study concentrates on the creation of an innovative optimization framework that 
integrates the WildWood algorithm with a fractional-order variant of the Golden Search Algorithm 
for hyperparameter optimization. The proposed framework is measured through simulations in a 
smart city traffic management background, resulting in notable reductions in latency (up to 30%), 
energy consumption (up to 25%), and enhancements in throughput (up to 20%) when compared to 
conventional optimization techniques. Moreover, the optimized WildWood model achieves a Mean 
Squared Error (MSE) of 0.85, indicating its proficiency in accurately forecasting traffic flow patterns. 
The results underscore the effectiveness of the proposed framework in enhancing the reliability, 
efficiency, and sustainability of IoT-enabled smart city systems.
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The rapid urbanization has formed an increasing demand for effective and sustainable city management. Smart 
cities, which are equipped with interconnected devices known as the Internet of Things (IoT), offer a promising 
solution to address these challenges1. These interconnected sensors gather a large amount of data that provides 
valuable insights into various aspects of city life, such as traffic flow, energy usage, and environmental conditions2. 
However, effectively utilizing this data requires strong techniques for data analysis and model optimization.

Smart cities data has the potential to revolutionize city living. Picture traffic signals adjusting in real-time 
to alleviate congestion, or energy consumption being optimized based on grid demands and weather, leading 
to sustainability and cost savings3. By harnessing this data, city officials can make informed decisions for 
efficient resource allocation, proactive issue resolution, and enhanced citizen services. However, analyzing this 
data comes with its own set of challenges. The sheer volume, diversity, and real-time nature of the data can 
overwhelm traditional methods. Additionally, the inherent noise and non-linear relationships in sensor data 
call for robust techniques. To fully unlock the potential of this data, we must optimize the analytical models 
used4. These models depend on hyperparameters that significantly impact their performance1. Traditional data 
analysis methods may struggle with the complexity and volume of data generated by smart city IoT networks. 
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Furthermore, obtaining accurate and reliable results depends on optimizing the performance of the chosen 
analytical models.

Alqahtani et al.5 conducted a research with the purpose of developing Urban Waste System of Management 
based on Internet of Things. IoT devices were utilized to oversee activities of human beings and aided in 
management of waste. Data related to a city has been gathered and analyzed using a long short-term recurrent 
neural network optimized by cuckoo search. The network enabled the examination of waste category, truck 
dimensions, and waste origin, facilitating the alerting of management centers of waste to take necessary actions. 
The IoT-based waste management procedure’s effectiveness has been assessed via an experimental study. It was 
determined that the system prioritized processing the bins with minimal error value of 0.16 and the highest 
accuracy value of 98.4% in as little as 15 min.

Annadurai et al.6 suggested a kind of method for transmitting secure data and diagnosing an invader within 
a biometric system of authentication through extracting features employing categorization. The biometric data 
has been processed to eliminate noise, normalization, and smoothening. The processed features of data have 
been derived employing Kernel-based Principal Component Analysis (KPCA). Following this, the processed 
attributes were categorized employing the convolutional VGG-16 Net framework. The whole model was 
secures employing a Deterministic Trust Transfer Protocol (DTTP). The findings of the study indicated that the 
suggested approach yielded improved intrusion diagnosis outcomes. The study could achieve the values of 96%, 
85%, 92%, 80%, and 46% for accuracy, f-score, Precision, recall, and an RMSE.

In an attempt, Chen et al.7 endeavored to distribute learning structure by employing edge intelligence and 
enhancing networking capability of intelligent terminal nodes that were organized on some computers, which 
were ordinary rather than specific hardware, like GPUs. The suggested method, which utilized intelligent 
edge techniques and multi-core CPU, reduced training costs and time while effectively utilizing resources of 
computer. Additionally, the most efficient method took into account the distributed communication system of 
edge computation and optimized the topology of network by employing the contributions of smart terminal 
nodes. It was demonstrated that the approach exceled across various topologies and surpassed other advanced 
optimizers in enhancing the strength of IoT topologies within smart cities.

Li et al.8 aimed to carry out the BDA (Big Data Analysis) on the huge information that were produced 
within the smart city Internet of Things (IoT), protect processing of data, and cause the smart city alter good 
supremacy’s direction. It was revealed from the findings that the efficacy of energy rose and decreased when the 
lowest energy α0 rose. The forecasting accuracy of the network was scrutinized. Then, it was illustrated that the 
accuracy value of the recommended model could reach 97.80%.

Cepeda-Pacheco and Domingo9 suggested a model based on deep learning. The suggested multi-label deep 
learning categorizer performed better than other networks, including extra tree, decision tree, random forest, 
and k-nearest neighbor. The model could gain the values of 99.7%, 0.5%, 99.9%, 99.9%, and 99.8% for accuracy, 
loss, recall, precision, and F1-score for case (a). Then, the model could suggest the values of 99.5%, 3.7%, 99.7%, 
99.8%, and 99.8 for accuracy, loss, recall, F1-score, and precision for case (b).

Despite the notable progress in machine learning for smart city applications, a key issue persists: enhancing the 
performance of these models. The success of a machine learning model greatly relies on its hyperparameters-the 
configurations that govern the learning process. Although there are different optimization techniques available, 
there is an ongoing endeavor to discover more effective and reliable methods. Conventional optimization 
strategies may encounter challenges such as being trapped in local optima (less than optimal solutions) and 
failing to attain the model’s highest potential performance.

This research investigates the use of machine learning, specifically the WildWood algorithm, for analyzing 
data collected from diverse IoT sensors within a smart city environment. Machine learning algorithms have great 
potential for extracting meaningful patterns and relationships from complex datasets. WildWood, in particular, 
is skilled at handling data with inherent noise or non-linearities, which are often present in real-world sensor 
data. However, the performance of any machine learning model heavily relies on its hyperparameters, which 
are the settings that control the learning process of the model. Optimizing these hyperparameters is essential to 
ensure the model achieves optimal performance on the target data.

This study introduces an innovative method that utilizes the WildWood algorithm for data analysis and 
presents a Fractional Order Golden Search Algorithm for hyperparameter optimization in the smart city 
domain. The Fractional Order Golden Search Algorithm brings numerous benefits compared to conventional 
optimization techniques. It has the potential to prevent being trapped in local optima and could result in quicker 
convergence, thereby enhancing the efficiency of the optimization process.

This study seeks to advance smart city data analysis by merging WildWood with a robust optimization 
method to:

•	 Improving the effectiveness and precision of machine learning models used in smart city applications.
•	 Showing the efficiency of the Fractional Order Golden Search Algorithm for hyperparameter optimization 

within this field.
•	 Offering a versatile framework for smart city data analysis tasks, enabling data-informed decision-making to 

enhance city management.
•	 Providing superior performance relative to conventional optimization algorithms in the enhancement of traf-

fic flow and the alleviation of congestion within smart city infrastructures.
•	 Managing intricate and diverse IoT data, addressing a critical challenge faced in smart city initiatives. Capa-

bilities for real-time optimization and decision-making, thereby enhancing the efficiency and effectiveness of 
smart city operations.
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Methodology
The Internet of Things (IoT) is transforming the daily lives and work routines, with a significant impact on the 
evolution of smart cities. This section explores the fusion of IoT and optimization technology as the cornerstone 
of smart city deployment, with the goal of enhancing connectivity, data sharing, and overall urban governance. 
As depicted in Fig. 1, the approach involves a thorough examination of how IoT functions to establish a network 
of interconnected devices, sensors, and systems that enhance various aspects of urban living.

The fundamental concept driving this integration is to harness the capabilities of IoT devices and sensors to 
gather and transmit real-time data. Through the consolidation of these technologies, smart cities can capitalize 
on improved data exchange, efficient resource utilization, and enhanced decision-making abilities.

A key benefit of this strategy is the capacity to streamline city operations and services. For instance, IoT 
sensors can be utilized to monitor traffic patterns, parking availability, air quality, and energy consumption. By 
collecting and analyzing this information, city administrators can make informed decisions to optimize traffic 
flow, reduce environmental pollution, and enhance energy efficiency. Moreover, IoT-enabled smart devices 
and systems can furnish residents with up-to-date information and interactive services, enriching their overall 
quality of life.

Furthermore, the utilization of IoT facilitates the creation of intelligent systems capable of learning and 
adapting to changing circumstances. Through the application of advanced analytics and machine learning 
algorithms, smart cities can identify trends, forecast demand, and proactively address potential challenges. This 
not only enhances the effectiveness of city operations but also fortifies the resilience of urban infrastructure, 
ensuring a sustainable and future-ready urban landscape.

Data sample
This research utilizes a dataset obtained from a wide array of Internet of Things (IoT) devices in the United 
Kingdom and the United States. The section offers an overview of the sample data and its main characteristics.

The sample data consists of data flows from 80 distinct IoT devices, including smart hubs, cameras, home 
automation systems, televisions, music devices, and various home appliances. These devices were carefully 
chosen to represent a broad range of functions and usage patterns commonly found in smart homes and cities10. 
By gathering data from a diverse set of devices, we aim to capture a comprehensive view of IoT behavior and 
interactions.

The dataset contains a total of 40,588,450 tagged instances, providing a significant amount of data for analysis. 
These instances were collected from 68 actively used and monitored IoT devices during the data collection 
period. Each instance represents a specific event, action, or interaction within the ecosystem of connected 
devices.

The data covers various information, including device activity, sensor readings, user interactions, and network 
communications. By analyzing these data flows, we can gain insights into the behavior, performance, and 
interconnections within the IoT environment. This includes understanding usage patterns, device interactions, 
and potential security or privacy concerns.

Fig. 1.  Graphical abstract of the methodology.
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It is important to note that this sample data was obtained from a separate reference, ensuring the confidentiality 
and integrity of the original data source. By utilizing an existing dataset, we can build upon previous research 
and contribute additional insights and analysis11.

By using this sample data, our research aims to explore the potential of IoT integration in smart cities. 
The data provides a real-world perspective on device usage, allowing us to identify patterns, challenges, and 
opportunities for optimization. Through detailed analysis, we can make informed recommendations for 
improving the implementation and management of IoT-enabled smart cities, ultimately enhancing the efficiency 
and quality of urban life.

Data normalization
In order to maintain consistency and simplify analysis, it is crucial to standardize the sample data collected 
from various IoT devices. Normalizing data involves adjusting and scaling it to a common range or distribution, 
enabling accurate comparisons and insightful data interpretation across different devices and measurement 
scales12. For our sample data, normalization methods were implemented to account for potential discrepancies 
in device usage, sensor accuracy, and data gathering procedures. The following steps were followed to normalize 
the data:

Min–max scaling
This technique scales the data to the range between 0 and 1. Each data point is transformed using the following 
formula13:

	
Normalized V alue = (Original V alue − Minimum V alue)

(Maximum V alue − Minimum V alue) � (1)

With this scaling method, we can be certain that all data is in a standardized range, enabling comparison across 
different devices and parameters.

Standardization
Standardization is the process of adjusting data to have a mean of zero and a standard deviation of one. This 
method is especially helpful for data that conforms to a normal distribution. The formula for standardization 
is14:

	
Standardized V alue = (Original V alue − Mean)

Standard Deviation
� (2)

Standardization is useful for pinpointing outliers and gaining insight into the varying significance of different 
variables.

Logarithmic transformation
When dealing with data that has a skewed distribution, applying a logarithmic transformation can help bring 
it closer to a normal distribution. This transformation is particularly beneficial for addressing right-skewed 
data, which is frequently observed in various natural phenomena and sensor readings. The formula for the log 
transformation is15:

	 Log − transformed V alue = log (Original V alue)� (3)

Utilizing the natural logarithm results in a more balanced dataset, making it simpler to analyze with common 
statistical techniques.

Categorical data encoding
Categorical variables, like device types or locations, were encoded using either one-hot encoding or label 
encoding methods. One-hot encoding generates binary columns for every category, showing whether a specific 
category is present or not. On the other hand, label encoding assigns a distinct numerical value to each category, 
enabling numerical analysis.

By utilizing these normalization methods, the sample data is enhanced to be more uniform and easily 
comparable. This process aids in recognizing trends, relationships, and irregularities within the data, resulting in 
more precise analysis and modeling16. Additionally, it simplifies the utilization of machine learning algorithms, 
as they tend to yield superior results with normalized data inputs. Through adherence to these procedures, 
we guarantee that the data is suitably adjusted, standardized, and converted, thereby enabling a thorough and 
impartial examination of IoT device behavior in the realm of smart city deployments.

WildWood implementation in smart cities
In the quest to develop intelligent and efficient smart cities, the integration of the IoT is crucial. IoT allows 
seamless communication and interconnectivity between devices and systems, flooring the way for enhanced data 
exchange and automation. However, advanced data processing and decision-making capabilities are essential to 
fully unlock the potential of IoT. The WildWood is an advanced algorithm specifically designed to challenge 
the challenges and complexities inherent in IoT data analysis. It provides a robust and adaptable framework for 
processing and interpreting large volumes of data generated by IoT devices in smart cities. By using WildWood, 
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valuable insights can be extracted, city operations can be optimized, and overall urban management can be 
enhanced.

One of the main advantages of WildWood is its ability to handle high-dimensional and heterogeneous data. 
IoT devices in smart cities collect and transmit data from various sensors, cameras, and other smart components, 
resulting in a diverse and complex dataset. WildWood excels in processing and analyzing this multi-faceted data 
by identifying patterns, correlations, and trends that may otherwise be difficult to discern.

Furthermore, WildWood brings a level of flexibility and context-awareness to IoT data analysis. It has the 
ability to learn and adapt to changes in environments and conditions within the smart city ecosystem. By 
incorporating feedback loops and adaptive mechanisms, WildWood can modify its decision-making processes 
and enhance its accuracy over time. This dynamic nature makes it well-suited for the constantly changing 
landscape of smart cities.

Also, WildWood provides improved accuracy and precision compared to traditional machine learning 
algorithms. Its unique structure and optimization techniques allow it to handle noisy and incomplete data, which 
are common challenges in IoT environments. Through the use of advanced feature selection and weighting 
methods, WildWood can identify the most relevant and informative features within the data, resulting in more 
accurate predictions and decisions. The integration of WildWood in smart cities can have wide-ranging benefits.

The WildWood algorithm has the capability to be mathematically structured in order to enhance IoT-driven 
smart city deployments. The WildWood algorithm can be formulated as the following optimization problem17:

	
J (W ) = 1

N

N∑
i=1

(Yi − f (Xi, W ))2� (4)

J(W ) is a measure of the difference between the predicted values and the actual values, N  specifies the total 
number of IoT devices, Yi determines the target variable (e.g. optimized traffic flow, energy consumption, or 
public safety metric), Xi represents the feature value of the ith IoT device, f  signifies the WildWood model 
mapping input data to the target variable, W  defines the set of weights that assigned to each feature to show their 
relative importance, The weights are used to combine the features of the input data Xi to make predictions, and 
the hyperparameters for the j (w) for optimal selection are: the number of trees (T), the Maximum Tree Depth 
(D), the Minimum Samples per Leaf (L), the Learning Rate (η), the Regularization Strength (λ).

The goal of the function is to minimize the sum of squared differences between the target variable Yi and the 
predicted values from the WildWood model f . This will help us find the best weights W  and model parameters 
to reduce the overall error.

In this study, a fractional Order-based variant of the Golden Search Algorithm has been used for this purpose.
The WildWood model is designed to handle complex and heterogeneous data to predict the optimal values 

of the hyperparameters that minimize the error function, i.e., J(W). This measures the difference between 
the predicted values and the actual values. The purpose of using the Fractional Order-based Golden Search 
Algorithm is to find the set of hyperparameters W  to minimize the error function J(W ).

To achieve this, the WildWood model predicts the values of the hyperparameters W  that correspond to the 
minimum error, taking the feature vector Xi as input and outputting a predicted value of the hyperparameters 
W . The predicted values of the hyperparameters W  are then used to compute the error function J(W ).

The Fractional Order-based Golden Search Algorithm then uses the computed error function to update 
the hyperparameters W , iteratively updating them until the error function is minimized. The use of the 
WildWood model in the Fractional Order-based Golden Search Algorithm helps to reduce the error in several 
ways, including improved prediction accuracy, reduced overfitting, and efficient exploration of the search space, 
ultimately leading to a more accurate and efficient hyperparameter optimization process.

Fractional ordered-based golden search algorithm
Background
Myriad random optimization techniques have been created to find optimal problem solver that usually include 
generating a group of logical solution, primary population, by employing a stochastic procedure. The fitness value 
of the present problem solvers has been evaluated within all iterations; in addition, they have been enhanced 
by the use of numerous formulas that make up main elements of the optimization technique. The procedure of 
iterative enhancement keeps on by the time a satisfactory criterion of termination has been met.

In the present research, the Golden Search Optimizer (GSO), a novel optimizer on the basis of bio-inspired 
algorithms, has been offered. The present algorithm integrates the benefits of earlier techniques, such as Sine 
Cosine Algorithms (SCA) and Particle Swarm Optimization (PSO), to strike a balance between global search 
and local search, which prevents from premature convergence.

The approach enhanced positions of objects by employing step size variables just like velocity within PSO. On 
the other hand, SCA have been employed in the place of stochastic values. Oscillation properties of the present 
functions permit an item to go toward another once and effectively employ the region between 2 problem solvers.

Moreover, global search abilities are probably developed through expanding the magnitude of the present 
functions to alter the situation of a solution that is exterior to the determined region. The GSO method has a 
scheme that is easy to conduct and outperforms previous bio-inspired methods regarding reaching the optimal 
global solution. It starts with a stochastic solution and updates the state of all individuals after each iteration, 
meeting the termination criterion with the help of a step size restriction. The GSO has been found to be a global 
optimizer that tries to generate an optimum solution by striking equilibrium between local search and global 
search. The approach is composed of 3 main components, including candidate renewal, candidate initialization, 
and candidate assessment.
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•	 Phase 1: Initialization of candidates

The search process of the GSO commences with creating a group of individual within solution space by 
employing a determined optimizer. These individuals have been selected in a random manner to commence the 
procedure of search that guarantees several probable outcomes for the issue of optimization. The individuals are 
simulated in the following manner18:

	

Gi =lbi + r × (ubi − lbi) ,

i =1, 2, . . . N
� (5)

where, the individual i within the search space has been depicted by Gi, and the lower an upper limitations of 
the individuals have been, in turn, displayed by lbi and ubi.

•	 Phase 2: Candidate evaluation

The candidates’ cost value within the population has been evaluated by employing a fitness function throughout 
the present phase. The fitness function has been utilized to measure a solution’s quality because it assesses to 
what extent problem limitations are efficiently fulfilled.

•	 Phase 3: The present individuals have to be enhanced.

Once the review of the individuals’ cost value has been accomplished, the update procedure of candidates gets 
started. The situations of candidates have been upgraded that is dependent on a step size variable, generating 
novel solution by the use of SCA. Then, novel solutions have been evaluated by employing the objective function, 
and the process has been recurred by the time the criterion of termination has been fulfilled.

•	 Phase 4: Assessing stage magnitude

By employing operator of stage magnitude (Sti), the candidates have changed to the finest result within all 
iterations of the optimizer. There are three stages that have to be conducted for St computation. The initial part 
illustrates the prior step size enhancement that has been multiplied by the operator of transform (T ); moreover, 
it slightly gets decreased to make an optimal equilibrium between global search and local search ability of the 
optimizer.

Within the second stage, the distance between present situation and former best situation of a candidates 
has been ascertained by employing a parameter’s cosine that is in the range [0, 1]. The final part illustrates the 
distance between candidate i and the optimum situations that have been gained by all candidates.

Then, the aforementioned distance has been multiplied via a stochastic number’s sine that is between 0 and 1. 
Throughout the initial stage of optimization process, Sti is generated stochastically and enhanced after several 
iterations on the basis of the formula that has been illustrated in the following:

	 Sti (t + 1) = T × Sti (t) + A1 cos (z1) × (Gbesti − Xi (t)) + A2 sin (z2) × (Gbesti − Xi (t))� (6)

here, the most optimal situation of the candidate i within the present iteration has been illustrated by Gbesti. 
Within the suggested approach, there are two stochastic number, A2 and A1, that are generated between 0 and 
2. Moreover, two stochastically values, z2 and z1, are generated between 0 and 1. To enhance search efficacy 
throughout local search and global search stages, an operator of transfer T  has been employed, adjusting the 
search technique for regulation of local search and global search. The variable T  has been found to be a function 
that gets deteriorated after a while, which has been calculated in the following way18:

	
T = 100 × exp

(−20t

TM

)
� (7)

here, the highest quantity of iterations has been illustrated by TM .0

•	 Phase 5: Constraint for magnitude of phase

The optimizer tried to adjust the distance of the candidate’s motion within each dimension of the issue region 
throughout all iterations. The magnitude of the phase, which is a stochastic parameter that is able to make the 
candidates have movements in bigger cycles within the issue region, has been restricted via a particular range 
to prevent from explosion and divergence. It has been called constraint for magnitude of phase, which has been 
employed for controlling the motion of candidate and preventing them from going wider cycles within the issue 
space. Moreover, it ensures that the optimizer makes convergences toward the optimum solution. the present 
procedure can be thoroughly illustrated subsequently:

	 Sti ∈ [−Stimin, Stimax]� (8)

here, the lowest and the highest restriction of the motion value have been, in turn, depicted by −Stimin and 
Stimax. These boundaries affect the movement of a candidate in its positioning arrangements throughout each 
iteration. The boundary can be expressed subsequently:
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	 Stimax = 0.1 × (ubi − lbi)� (9)

•	 Phase 6: renewal of location

Within the present phase, a novel candidate has been made for exploring the global optimal situation by the use 
of Eq. (10) that enables the optimizer to move to the optimum problem solver within solution space:

	 Gi (t + 1) = Gi (t) + Sti(t + 1)� (10)

Fractional ordered-based golden search algorithm
The Golden Search Algorithm is known for its successful optimization outcomes, which has encountered 
challenges in certain scenarios. In this research, a new modification has been proposed to address these issues, 
offering more accurate and widespread results. This modification involves the use of fractional calculus (FC).

The fractional-order calculus (FC) is a valuable tool for enhancing the performance of meta-heuristic 
algorithms. The FC approach provides a well-organized consideration of process, memory, and inherent 
characteristics, making it a useful tool for improving the efficiency of meta-heuristic algorithms by taking into 
account memory aspects during solution updates. One of the popular models of FC is the Grunwald–Letnikov 
(GL) method which is defined in the following:

	
Sσ (Gi (t)) = lim

h→0

1
hσ

∞∑
a=0

(−1)a
(

σ
a

)
Gi (t − ah)� (11)

where

	

(
σ

a

)
= Γ(σ + 1)

Γ(a + 1)Γ(σ − a + 1) = σ (σ − 1) (σ − 2) . . . (σ − a + 1)
a! � (12)

where Γ (t) specifies the gamma function, and Dσ (Gi (t)) represents the GL fractional derivative of order σ 
which can be formulated as follows:

	
Sσ [Gi (t)] = 1

T σ

N∑
a=0

(−1)a Γ (σ + 1) Gi (t − aT )
Γ (a + 1) Γ (σ − a + 1) � (13)

where σ signifies the derivative order operator, T  represents the sampling time, and N  specifies the length for 
memory. By assuming σ = 1, the previous equation has been reformulated as follows:

	 S1 [Gi (t)] = Gi (t + 1) − Gi (t)� (14)

where S1 [Gi (t)] defines the variance in the following. This study uses FC memory to update the renewal of 
location in phase 6, i.e.,

	 Gi (t + 1) − Gi (t) = Sti(t + 1)� (15)

So, the joint equation can be considered as follows:

	
Sσ [Gi (t + 1)] = Gi (t) +

m∑
a=1

(−1)a Γ (δ + 1) Zi (t + 1 − a)
Γ (a + 1) Γ (σ − a + 1) = Sti(t + 1)� (16)

By using the above assumptions, the renewal of location has been reformulated as follows:

	
Gi (t + 1) = −

m∑
a=1

(−1)a Γ (σ + 1) Gi (t + 1 − a)
Γ (a + 1) Γ (σ − a + 1) + Sti(t + 1)� (17)

Setting m equal to 4 and considering first four terms of memory data, the renewal of location has been 
reformulated as follows:

	

Gi (t + 1) = 1
1!σGi (t) + 1

2!σ (1 − σ) Gi (t − 1) + 1
3!σ (1 − σ) (2 − σ) Gi (t − 2)

+ 1
4!σ (1 − σ) (2 − σ) (3 − σ) Gi (t − 3) + Sti (t + 1)

� (18)

Results and discussions
In this study, the method analysis has been evaluated during some subsections which are explained in the 
following.
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Authentication of the proposed algorithm
To assess the effectiveness of the Fractional ordered-based Golden Search (FO-GS) algorithm, we conducted 
a comprehensive evaluation using the well-known CEC-BC-2017 test case. In this study, we compared the 
performance of the FO-GS algorithm against six prominent optimization algorithms: Multi-verse optimizer 
(MVO)19, Owl Search Algorithm (OSA)20, Squirrel search algorithm (SSA)21, Billiard-based Optimization 
Algorithm (BOA)22, World Cup Optimization (WCO)23, and Biogeography-Based Optimizer (BBO)24. By 
benchmarking these algorithms, we aim to highlight the strengths and advantages of the FO-GS algorithm in 
solving complex optimization problems. The parameter configurations utilized by the algorithms employed are 
shown in Table 1.

To enable a meaningful comparison, a standardized parameter settings should be employed for all algorithms. 
The highest number of epochs and population size for all methods are consistently set at 200 and 60, respectively. 
To guarantee precise and dependable results, each technique was executed individually 15 times across all 
benchmark functions. The research used functions with a solution range from − 100 to 100, each characterized by 
ten dimensions. The evaluation results, comparing the FO-GS algorithm with multiple metaheuristic algorithms 
on the CEC-BC-2017 test functions, are detailed in Table 2.

Based on the evaluation results presented in Table 3, it is evident that the Fractional ordered-based 
Golden Search (FO-GS) algorithm outperforms the other six prominent optimization algorithms in terms of 
effectiveness and efficiency. When comparing the average (Avg) values across different functions, the FO-GS 
algorithm consistently achieves lower values compared to its competitors.

This indicates that FO-GS finds better solutions with lower function values, suggesting its superior 
performance in optimizing the given test functions. Furthermore, the FO-GS algorithm demonstrates higher 
stability and reliability compared to the other algorithms, as evident from the low standard deviation (StD) 
values. The StD values represent the variation or spread of the results obtained across multiple runs. Lower StD 
values indicate that the algorithm consistently finds good solutions, with less variation in the obtained results.

WildWood optimization results
The results obtained after utilizing the Fractional Order-based Golden Search Algorithm to find the optimal 
hyperparameters are as follows:

The data suggests that the WildWood algorithm achieves optimal performance with a moderate tree count of 
150 and a maximum tree depth of 8. The minimum samples per leaf is established at 5, indicating the algorithm’s 
capability to manage smaller datasets effectively. A learning rate of 0.1 is employed, representing a balanced 
approach between exploration and exploitation. Lastly, a regularization strength of 0.01 is applied, implying that 
the algorithm incorporates a moderate degree of regularization to mitigate the risk of overfitting. The WildWood 
model has been retrained using optimal hyperparameters, leading to the computation of the cost function value. 
Table 4 indicates the optimal values achieved for the cost function of the suggested WildWood.

The optimization process has identified the best combination of hyperparameters for the WildWood 
algorithm for our purpose. With these optimal values, the model achieves an MSE of 0.85, indicating a good fit 

Algorithm Set parameter Value

MVO19

W EPmin 0.2

W EPmax 1

Coefficient(P ) 6

OSA20

Tdead 18

|P | 10

Acclow 0.2

Acchigh 1

SSA21

Nfs 4

Gc 1.9

Pdp 0.1

BOA22

No. of pockets 22

w 0.7

ES 0.3

BBO24

Habitat modification probability 1

Immigration probability 1

Step size 1

Max immigration (I) 1

Max emigration (E) 1

Mutation probability 0.005

WCO23
Play off 0.04

ac 0.3

Table 1.  The parameter configurations utilized by the algorithms employed.
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between the predicted and actual traffic flow data. By tuning the hyperparameters, we have improved the model’s 
performance and reduced the error in traffic flow predictions. The selected values strike a balance between 
model complexity and generalization, leading to more accurate and reliable predictions for smart city traffic 
management. This example demonstrates how cost function selection and hyperparameter optimization can 
enhance the effectiveness of the WildWood algorithm in addressing specific smart city challenges.

Model analysis
In this section, the performance assessment of the suggested WildWood/FOGSA (Fractional Order-based 
Golden Search Algorithm) model was introduced and analyzed for the execution of smart cities. The assessment 
is carried out by contrasting WildWood/FOGSA with current optimization algorithms, including genetic 
algorithm (SGA)25, improved ant colony optimization-simulated annealing (ACOSA)25, and the original Golden 
Search Algorithm (GSA), across a range of performance indicators. These indicators consist of latency, energy 
usage, throughput, and network longevity.

Latency
Latency is the duration between a user’s request and the server’s response. It plays a crucial role in evaluating the 
system’s responsiveness and effectiveness. Latency, denoted as L, is defined as:

	 L = Tresponse − Trequest� (19)

Cost function Optimal value

Mean squared error (MSE) 0.85

Table 4.  The optimal values achieved for the cost function of the suggested WildWood.

 

Hyperparameter Optimal Value

Number of trees 150

Maximum tree depth 8

Minimum samples per Leaf 5

Learning rate 0.1

Regularization strength 0.01

Table 3.  The optimal values achieved for the parameters of the suggested WildWood.

 

Function Indicator FO-GS MVO OSA SSA WCO BOA BBO

F1
Avg 1.136443 25.117 13.757 21.493 54.793 21.863 2.571

StD 0 2.353 7.729 13.038 6.726 0.981 2.952

F3
Avg 0.785692 1.194 81.122 9.130 1.890 37.308 10.458

StD 0 4.515 0.000 3.421 0.701 5.336 0.000

F5
Avg 15.18834 32.369 206.251 262.964 75.514 38.111 218.862

StD 0.114575 1.411 1.939 1.087 1.049 1.238 2.366

F7
Avg 8.236361 13.739 21.371 115.681 29.148 174.250 124.714

StD 0.028365 1.060 4.333 0.664 1.002 1.701 0.854

F9
Avg 5.030082 159.255 54.172 199.840 182.184 120.450 149.494

StD 0.006627 0.008 0.038 0.187 6.335 0.126 0.010

F11
Avg 11.53439 74.358 247.821 259.173 14.802 123.758 270.148

StD 0.314032 1.949 1.424 2.326 4.122 3.353 0.589

F13
Avg 816.7334 2239.488 3402.930 875.580 4406.976 3540.631 1092.331

StD 27.15951 684.309 1904.409 451.525 2985.347 1111.973 950.676

F15
Avg 8.655348 83.274 224.295 958.658 1010.131 17.321 356.682

StD 6.918234 18.730 8.292 17.178 171.135 12.316 17.142

F17
Avg 4.644907 5.803 63.007 236.727 352.005 29.187 55.628

StD 4.470481 12.605 13.269 8.764 4.947 9.997 7.340

F19
Avg 5.578051 6.615 958.396 300.327 1544.253 345.579 1143.791

StD 5.253497 11.784 358.223 329.076 996.747 12.640 402.171

Table 2.  The evaluation results, comparing the FO-GS algorithm with multiple metaheuristic algorithms on 
the CEC-BC-2017 test functions.
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where Trequest and Tresponse are the time at which the user sends a request, and the time at which the server 
responds, respectively.

Figure 2 illustrates the latency comparison between conventional methods (SGA, ACOSA, and GSA) and the 
innovative WildWood/FOGSA approach.

The analysis demonstrates that the WildWood/FOGSA method exhibits the lowest latency compared to 
all other techniques, signifying its superior efficiency regarding computational time. In contrast, traditional 
methods such as SGA, ACOSA, and GSA show elevated latency levels, with SGA recording the highest latency. 
The reduction in latency associated with the WildWood/FOGSA method can be ascribed to the proficient 
optimization of hyperparameters facilitated by the Fractional Order-based Golden Search Algorithm (FOGSA). 
This algorithm effectively identifies the optimal hyperparameters, leading to a more efficient and rapid 
convergence of the WildWood algorithm. This suggests that WildWood/FOGSA is prompter and more effective 
in managing user requests.

Energy consumption
Efficient energy management is another important task in scheduling and IoT device management. It quantifies 
the energy utilized by individual nodes for data transmission or task completion. Energy Consumption, denoted 
as E, is defined as:

	
E =

N∑
i=1

Pi × Ti� (20)

where Pi describes the power consumption of the ith node, and Ti determines the time duration of its activity. 
Figure 3 provide a bar plot representation of the energy consumption comparison.

In comparison, traditional methods demonstrate greater energy consumption levels, with GSA utilizing 90 Joules, 
ACOSA at 92 Joules, and SGA exhibiting the highest energy usage at 98 Joules. This suggests that the WildWood/
FOGSA method is the most energy-efficient of the four approaches. The reduction in energy consumption 
associated with the WildWood/FOGSA method can be credited to the effective optimization of hyperparameters 
through the Fractional Order-based Golden Search Algorithm (FOGSA). By refining the hyperparameters, the 
WildWood algorithm achieves enhanced performance while requiring fewer computations, thereby leading to 
decreased energy consumption. This demonstrates that WildWood/FOGSA is more energy-efficient, a crucial 
factor in extending the longevity of IoT devices and cutting down on operational expenses.

Fig. 2.  Latency comparison between the conventional and proposed approaches.
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Throughput
Throughput is a significant metric that quantifies the volume of data that a system can handle or transfer during 
a specific period. It serves as a fundamental gauge of the system’s performance and capability.

Throughput, denoted as T, is defined as:

	
T = T otal data processed/transmitted (bits)

T ime duration (seconds) � (21)

Figure 4 displays the comparison of throughput between the proposed WildWood/FOGSA model and the other 
state of the art models.

As shown in Fig. 4, WildWood/FOGSA model achieves a significantly higher throughput of 98% compared 
to the traditional methods. This demonstrates the superior efficiency and data processing capabilities of the 
proposed method.

Network lifetime
The network lifetime is the period until the initial node in the network depletes its energy, which is a crucial 
measure for evaluating the system’s durability and viability. Lifetime, denoted as LT, is defined as:

	
LT = min

i=1,2,...,N

(
Ei

Pi

)
� (22)

where, Ei and Pi represent the initial energy of the ith node, and its power consumption rate, respectively.

Figure 5 displays the comparison of lifetime between the proposed WildWood/FOGSA model and the other 
state of the art models.

The findings from Fig. 5 reveal that WildWood/FOGSA greatly enhances the network’s durability, surpassing 
other methods. This underscores the efficiency of the proposed technique in managing energy consumption and 
extending the network’s operational lifespan.

Discussions
The results presented in this section highlight the exceptional performance of the WildWood/FOGSA 
optimization method for smart city implementation. WildWood/FOGSA consistently outperforms traditional 
methods (SGA, ACOSA, and GSA) across all metrics, including energy consumption, latency, throughput, 
and network lifetime. The improved performance of WildWood/FOGSA can be attributed to its innovative 
combination of WildWood optimization and the Fractional Order-based Golden Search Algorithm. This hybrid 
approach enabled efficient exploration of the solution space, leading to more effective decision-making and 
resource allocation in smart cities. By achieving lower latency, reduced energy consumption, higher throughput, 
and extended network lifetime, WildWood/FOGSA showed its potential to enhance the overall efficiency, 
sustainability, and reliability of IoT-enabled smart city systems. Furthermore, the results underscore the 
importance of optimizing hyperparameters and cost functions, as discussed earlier. By tailoring the WildWood 

Fig. 3.  A bar plot representation of the energy consumption comparison.
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algorithm to the specific requirements of smart city applications, its performance and adaptability can be further 
enhanced to diverse scenarios.

The model participates the WildWood algorithm with the Fractional Order Golden Search Algorithm to0 
make it applicable in different real-world Internet of Things (IoT) settings, such as smart cities, industrial 

Fig. 5.  Network lifetime comparison between the conventional and proposed approaches.

 

Fig. 4.  Comparison of throughput between the proposed WildWood/FOGSA model and the other state of the 
art models.
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automation, agriculture, and healthcare. This integration aims to enhance the performance of IoT devices across 
systems like traffic management, energy management, predictive maintenance, patient monitoring, and crop 
monitoring.

Nonetheless, the implementation of our model in actual IoT networks faces several limitations and 
challenges, including issues related to scalability, data quality, security, interoperability, real-time processing, 
energy efficiency, and network latency. To address these challenges, we recommend employing distributed 
computing, robust security measures, data preprocessing techniques, interoperability standards, real-time 
processing methodologies, energy-efficient algorithms and hardware, as well as network optimization strategies. 
By attempting these obstacles, the model can be successfully deployed in practical IoT environments, ensuring 
optimized performance and effective management of IoT devices.

Also, alongside all the advantages of the proposed method, there are some limitations that can be considered in 
the future work. Firstly, it requires substantial amounts of training data to effectively optimize hyperparameters, 
which poses a challenge in smart city applications where data availability may be restricted. Moreover, the 
framework is prone to overfitting, particularly when handling complex and diverse datasets. The use of the 
Fractional Order Golden Search Algorithm within the framework can also lead to significant computational 
complexity, thereby increasing the time and resources needed for processing. Additionally, the framework’s 
performance is highly sensitive to the selection of hyperparameters. Lastly, the applicability of the proposed 
framework may be constrained, as it may not generalize effectively to other smart city applications or scenarios.

Conclusions
The growing of smart cities cruces on the ability to extract meaningful insights from the ever-increasing volume 
of data generated by ubiquitous Internet of Things (IoT) sensors. This data holds immense potential to optimize 
city operations, improve resource allocation, and ultimately enhance the quality of life for residents. However, 
effectively utilizing this data requires robust techniques for both data analysis and model optimization. This 
study explored the application of machine learning, specifically the WildWood algorithm, for analyzing data 
collected from various IoT sensors within a smart city environment. WildWood’s strength lies in its ability 
to handle complex and potentially noisy data, making it well-suited for this task. However, optimizing the 
performance of machine learning models is crucial for ensuring accurate and reliable results. To address this, 
a novel approach was proposed using the Fractional Order Golden Search Algorithm for hyperparameter 
optimization. This optimization technique offers advantages like avoiding local optima and potentially achieving 
faster convergence compared to traditional methods. The simulations demonstrated the effectiveness of the 
proposed framework. The WildWood model achieved significantly improved efficiency when optimized with 
the Fractional Order Golden Search Algorithm. This translates to more accurate and reliable insights gleaned 
from smart city data, empowering city officials to make data-driven decisions that benefit citizens. Future work 
could focus on evaluating the proposed framework on real-world smart city datasets with various sensor types, 
comparing the performance of WildWood with other machine learning algorithms suitable for smart city 
applications, investigating the integration of alternative optimization algorithms with WildWood and exploring 
their potential benefits, and unlocking the full potential of smart city data, by continuing to explore and refine 
analytical approaches leading to a more efficient, sustainable, and citizen-centric urban future.

Data availability
All data generated or analysed during this study are included in this published article.
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