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Abstract. We introduce a new mean-field game framework to analyze the impact of
carbon pricing in a multi-sector economy with defaultable firms. Each sector produces
a homogeneous good, with its price endogenously determined through market clearing.
Firms act as price takers and maximize profits by choosing an optimal allocation of
inputs—including labor, emissions, and intermediate goods from other sectors—while
interacting through the endogenous sectoral price. Firms also choose their default timing
to maximize shareholder value.

Formally, we model the economy as an optimal stopping mean-field game within each
sector. The resulting system of coupled mean-field games admits a linear programming
formulation that characterizes Nash equilibria in terms of population measure flows. We
prove the existence of a linear programming Nash equilibrium and establish uniqueness
of the associated price system.

Numerical illustrations are presented for firms with constant elasticity of substitution
(CES) production functions. In a stylized single-sector economy, carbon price shocks
induce substitution between emissions and labor. In a three-sector economy, the manu-
facturing sector faces consumer demand and requires inputs from a brown sector, which
can be increasingly replaced by green-sector goods as carbon prices rise. These exper-
iments reveal that carbon price shocks can generate substantial spillover effects along
the value chain, underscoring the importance of sectoral interdependencies in shaping
effective decarbonization pathways.

1. Introduction

A large-scale shift toward low-carbon technologies is essential to limit global warming and
mitigate the most severe impacts of climate change. As governments implement policies to
reduce emissions and consumer sentiment drives demand shocks, green firms are expected
to gain market share, while brown firms—those unable to decarbonize—may face revenue
losses, asset stranding, and even default. These transition risks can propagate through the
real economy and the financial system, and must therefore be closely monitored by banks
and supervisory authorities (Basel Committee on Banking Supervision, 2021, 2022).

The prevailing methodology for assessing transition risks relies on climate stress testing
(Acharya et al., 2023). A climate stress test evaluates the potential losses of financial
institutions under specific transition scenarios using a combination of economic, financial,
and physical models. The typical approach begins with an integrated assessment model
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that translates carbon price or demand shocks into a global macroeconomic trajectory and
ends with a default model projecting firm-level distress (ACPR, 2020). While pragmatic,
this multi-model setup suffers from important limitations: inconsistencies across models,
a lack of two-way feedback between macro and micro levels, and limited treatment of
uncertainty.

In this paper, we propose an alternative, integrated modeling framework to assess the
impact of macroeconomic shocks—particularly carbon pricing—on transition risks and firm
defaults. Our approach is based on the theory of mean-field games (MFGs), which provides
the mathematical tractability needed to jointly capture endogenous default decisions un-
der idiosyncratic shocks and realistic inter-sectoral input-output linkages within a unified
model.

We develop a multi-sector equilibrium model of the productive economy aimed at study-
ing how carbon price shocks propagate through the value chain. Each sector comprises a
continuum of firms producing a homogeneous good. Production requires inputs from other
sectors, labor, and carbon emissions, and is described by a sector-specific production func-
tion. Sectors face endogenous demand from other sectors and exogenous consumer demand,
and prices are determined endogenously via market clearing. Firms choose an optimal al-
location of inputs—including labor, emissions, and goods from other sectors—to maximize
profits. While production technologies are identical within each sector, firms are subject
to idiosyncratic labor costs and interact through sectoral prices both within and across
sectors.

Firms also choose their optimal default timing to maximize shareholder value, resulting
in exits at uncertain future dates. Since carbon emissions are essential to production,
carbon price shocks raise marginal costs and may trigger firm default. A cascade of defaults
in a carbon-sensitive sector can drive up the price of its output, thereby increasing costs
in downstream sectors and amplifying default risk along the value chain.

We model the economy as a coupled system of optimal stopping mean-field games—one
for each sector. Following Bouveret et al. (2020) and Dumitrescu et al. (2021), we solve
this system using a linear programming formulation, which characterizes Nash equilibria
in terms of population measure flows. We prove the existence of a linear programming
Nash equilibrium and establish uniqueness of the associated price system. To this end, we
introduce an auxiliary Minimax problem and show that any saddle point corresponds to a
MFG Nash equilibrium. This formulation enables us to prove existence via the existence
of saddle points. The Minimax problem admits a natural interpretation as a social planner
problem, in which the planner controls the distribution of agents and selects the price
system to maximize aggregate surplus.

Finally, we provide numerical illustrations using CES production functions and Cox – In-
gersoll – Ross (CIR) processes for labor cost dynamics. We explore two scenarios: one with
a single sector exposed to carbon price shocks, and another with three interconnected sec-
tors (brown, green, and manufacturing) linked through a specified input–output network.
Our simulations show that in the directly affected sector, capacity declines significantly in
response to carbon pricing. Moreover, the shock propagates through the value chain, gen-
erating spillover effects. However, even large shocks rarely lead to abrupt waves of default,
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as firms optimally anticipate the rise in emission costs and, after an initial clearing, exit
the market gradually.

These findings support the view that an early-announced and stable policy framework
facilitates smoother asset value adjustments and mitigates systemic risk.

1.1. Structure of the paper. The remainder of the paper is organized as follows. The
rest of this introduction reviews the relevant literature. Section 2 introduces the profit
maximization problem of a single firm in a static setting. We prove the existence of
profit-maximizing input configurations and provide explicit solutions in the case of CES
production functions. Section 3 extends the analysis to a multi-sector economy with a
static price formation mechanism. We study the interaction between prices and input
choices from a competitive equilibrium perspective and prove the existence of a competitive
(Nash) equilibrium. Section 4 develops a dynamic market model, where each sector is
represented by a mean-field firm optimizing both production and default timing. Using
the linear programming approach introduced in Bouveret et al. (2020) and Dumitrescu
et al. (2021), we reformulate the optimal stopping problem as a linear program. We then
establish the existence of a mean-field game Nash equilibrium and prove the uniqueness
of the associated price system. Section 5 presents numerical illustrations, and Section 6
concludes.

1.2. Related literature. We briefly review the literature relevant to our work. Compre-
hensive overviews of the financial implications of climate change are provided by Campiglio
et al. (2018) and Krueger et al. (2020). The former emphasizes the role of central banks
and financial regulators in facilitating the low-carbon transition, particularly through car-
bon pricing. The latter focuses on institutional investors and the influence of climate risks
— especially regulatory risks — on portfolio decisions.

This focus on risk has spurred stress-testing methodologies to assess financial vulnerabil-
ities from regulatory shocks. Battiston et al. (2017) propose a network-based approach to
capture financial interdependencies, while Bouchet and Le Guenedal (2020) use a bottom-
up framework to evaluate corporate credit risk under carbon pricing scenarios. Several
studies build on the Merton model (Merton, 1974), including Capasso et al. (2020) and
Reinders et al. (2023), who empirically show that firms with higher carbon footprints face
higher perceived default risk, reinforcing the need to incorporate carbon exposure into
credit risk assessments.

Further structural models include Wang et al. (2024) and Löschenbrand et al. (2024).
The former uses China’s accession to the Paris Agreement as an exogenous shock, finding
that rising carbon risk can reduce defaults among high-emission firms — a possible regula-
tory gain. The latter combines financial and emissions data for over 2.5 million borrowers
across major European banks. Their stress tests suggest that while high carbon prices
pressure certain firms, systemic default risk in the Euro area remains limited.

Building on an earlier work by Agliardi and Agliardi (2021), Le Guenedal and Tankov
(2025) introduce an endogenous default model with partial information to price defaultable
bonds under transition risk, whose severity depends on a latent scenario gradually revealed
through the dynamics of the carbon price.
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A separate strand of literature studies the diffusion of carbon pricing across sectors
using Input-Output (I-O) and equilibrium models. I-O analysis, rooted in Leontief’s work,
models intersectoral dependencies (Blair and Miller, 2009). Adenot et al. (2022) apply this
framework to the global economy using WIOD data under different carbon price scenarios.
Related studies on Chile include Mardones and Muñoz (2018) and Mardones and Mena
(2020).

Despite their tractability, I-O models assume fixed input proportions and do not model
price responses. Equilibrium models address these limitations by allowing input substitu-
tion and price formation, typically under perfect competition.

Partial and general equilibrium models have been widely used to analyze carbon pricing.
Neuhoff and Ritz (2019) adopt a partial equilibrium approach to study carbon pass-through
within an industry. Frankovic (2024) uses a multisector, multiregional computable general
equilibrium (CGE) model to evaluate spillover effects of global carbon pricing on Germany
and Europe (see also Wei and Aaheim (2023)).

To incorporate time dynamics and uncertainty, these models evolve into dynamic sto-
chastic general equilibrium (DSGE) frameworks, enabling richer firm behavior such as
entry and exit. Miao (2005) develops a single-sector DSGE model with firm-level technol-
ogy shocks, anticipating ideas later formalized in mean-field games (MFGs) by Lasry and
Lions (2007).

In the context of transition risk, Bouveret et al. (2023) build a DSGE model incorpo-
rating GHG emission costs in both production and consumption, linking carbon costs to
credit portfolios. Similarly, Matsumura et al. (2024) model Japan’s economy using a DSGE
framework with I-O structure and investment networks.

DSGE models also offer normative insights. Golosov et al. (2014) derive a closed-form
optimal carbon tax by solving a social planner’s problem with climate externalities, later
extended by van der Ploeg and Rezai (2021) to include global warming’s impact on utility
and productivity growth.

While powerful, DSGE models become intractable with many heterogeneous agents.
Mean-field game theory, introduced by Lasry and Lions (2007), overcomes this curse of
dimensionality by shifting the focus from individual agents to the “mean field”, which
represents the aggregate behaviour of the population. MFGs arise as the asymptotic limit
of stochastic differential games with many symmetric agents. Each agent controls a state
variable influenced by idiosyncratic noise and the population distribution. In the limit,
this leads to a coupled system of PDEs: a Hamilton-Jacobi-Bellman (HJB) equation for
the value function and a Fokker-Planck (FP) equation for the distribution dynamics. For
a comprehensive discussion, see Carmona and Delarue (2018a) and Carmona and Delarue
(2018b).

While early MFG studies focused on solving this PDE system, an alternative formulation
by Carmona and Delarue (2015) characterizes equilibria using forward-backward stochastic
differential equations (FBSDEs).

Extensions to MFGs include common noise, major players, singular controls, and optimal
stopping. The latter is particularly relevant for entry-exit problems, though solving the
HJB-FP system becomes difficult due to the free boundary. To overcome this, Bouveret
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et al. (2020), Dumitrescu et al. (2021), and Dumitrescu et al. (2023) propose a novel
reformulation of the optimal stopping problem as a linear program, where optimization is
performed over population measure flows subject to a linear constraint imposed by the FP
equation.

Mean-field games have found wide application in economics. For instance, Achdou et al.
(2022) extend the Aiyagari–Bewley–Huggett model of income and wealth distribution to
continuous time, using mean-field game theory to handle agent heterogeneity. In a related
context, Achdou et al. (2023) model an economy composed of competing firms subject to
idiosyncratic capital dynamics, focusing on stationary equilibria for the consumption prob-
lem under capital constraints. Further relevant applications of MFG theory in economics
can be found in Alvarez et al. (2023) and Liang and Zhang (2024).

Applications of MFG modeling to climate and energy topics—including electricity mar-
kets and green transitions—have gained increasing attention. Notable contributions include
Guéant et al. (2010), Escribe et al. (2024), Aı̈d et al. (2021), Bassiére et al. (2024). The
latter two, in particular, address entry–exit problems in electricity markets involving con-
ventional and renewable producers, employing a linear programming approach to charac-
terize the MFG Nash equilibria. Their existence and uniqueness results rely on fixed-point
arguments. In contrast, the present work also adopts the linear programming formulation
but establishes the existence of equilibria via a Minimax approach.

2. Firm-level profit maximization with carbon pricing

In this section, we formulate and solve the profit maximization problem for a single
firm operating in a fixed sector i ∈ {1, . . . , N} in interaction with the other sectors. The
production process is modeled by a function that combines inputs from all sectors, carbon
emissions considered as input in the production process, and a local input such as capital
or labor. The firm operates in a competitive market, optimizing its input decisions to max-
imize profits while treating prices as given. Under general assumptions on the production
function and cost structure, we establish the existence of an optimal input choice. In the
special case of a constant elasticity of substitution (CES) production function, we derive
closed-form solutions for the firm’s optimal input allocation and output level. Proofs are
presented in Appendix A.

2.1. Production functions. Let qij denote the quantity of good j used by the firm in its
production process. We define qi := (qij)j=1,...,N as the vector of input quantities sourced
by the firm from all sectors, including its own sector i.

In addition to sectoral inputs, we introduce two specific production inputs: Ei, referred to
as emissions, representing greenhouse gas (GHG) emissions resulting from the production
process; and Li, referred to as labor, encompassing both workforce and productive capital
(e.g., machinery) employed in production.

By treating emissions as an input — or “quasi-input” — to production, we follow the
approach adopted in the environmental economics literature, notably in Ebert and Welsch
(2007) and Considine and Larson (2006). This formulation allows firms to substitute
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carbon-intensive technologies with labor - or capital - intensive alternatives, or with tech-
nologies relying on inputs from other sectors, in order to mitigate emission-related costs.

The production function Fi : RN+2
≥0 → R≥0 maps the input quantities to the gross total

output of the firm, which is given by

(1) Fi(qi, Ei, Li), i = 1, . . . , N.

To simplify notation, we denote the full vector of inputs as x := (q, E, L) ∈ RN+2
≥0 . We

assume that the production function satisfies the following standard conditions.

Assumption 2.1 (Production function). The production function Fi is increasing in each
argument, upper semi-continuous, and concave. Additionally, Fi satisfies one of the follow-
ing alternative conditions:

(a) Fi(x) = o(∥x∥) as ∥x∥ → ∞.
(b) Fi is homogeneous of degree one, meaning that

Fi(λx) = λFi(x),

for any λ > 0 and x ∈ RN+2
≥0 , and additionally,

Fi(q, E, L) ≤ ciL for some constant ci < ∞.

Condition (a) implies that the production function exhibits sublinear growth in total in-
put usage, capturing inefficiencies that arise at high input levels and leading to diminishing
marginal gains. This extends the classical notion of decreasing returns to scale, typically
characterized by homogeneity of degree less than one.

Condition (b), in contrast, corresponds to constant returns to scale, where output scales
proportionally with all inputs. The additional upper bound relative to labor ensures that
labor remains an essential input, preventing it from being completely substituted by other
production factors.

For a general discussion of production functions and the economic interpretation of their
properties, we refer to standard microeconomic textbooks such as Varian (1992) and Mas-
Colell et al. (1995).

Example 2.2 (CES Functions). The CES (Constant Elasticity of Substitution) production
functions form a broad and widely used class of production technologies. In our framework,
the CES production function takes the form

(2) Fi(qi, Ei, Li) = Ai

 N∑
j=1

αijq
−ρi
ij + αiEE

−ρi
i + αiLL

−ρi
i

− ki
ρi

, ρi > 0, ki ∈ (0, 1],

where Ai ≥ 0 denotes the total factor productivity, and the share parameters αij , αiE , and
αiL satisfy

N∑
j=1

αij + αiE + αiL = 1.
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The substitution parameter ρi determines the elasticity of substitution via

ESi =
1

1 + ρi
.

The parameter ki governs the degree of homogeneity: for ki = 1, the function is linearly
homogeneous; for ki < 1, it exhibits sublinear growth.

This class satisfies Assumption 2.1: condition (a) holds for ki < 1, and condition (b) for
ki = 1, with ci = αiL ensuring a linear bound in labor. See Uzawa (1962), Arrow et al.
(1961) for further details.

2.2. Firm’s profit maximization problem. We assume that the firm operates in a
competitive market and behaves as a price taker.

The total cost function Ci : R2N+3
≥0 → R≥0 is given by:

(3) Ci(P, PE ,qi, Ei, Li) =

N∑
j=1

Pjqij + PEEi +Wi(Li),

where P = (P1, . . . , PN ) ∈ RN
≥0 denotes the vector of sectoral input prices, PE ∈ R>0 is

the carbon price, and Wi : R≥0 → R>0 is the labor cost function, assumed to satisfy the
following conditions.

Assumption 2.3 (Labor cost function). The labor cost function Wi is strictly increasing,
lower semi-continuous, and convex.

If the production function Fi satisfies Assumption 2.1 (b), we shall impose an additional
growth condition on Wi to ensure well-posedness of the maximization problem.

Assumption 2.4 (Asymptotic growth of labor cost function). The labor cost function Wi

satisfies

lim
L→∞

Wi(L)

L
= +∞.

Example 2.5 (Power labor cost functions). A class of labor cost functions satisfying both
Assumption 2.3 and Assumption 2.4 is given by:

Wi(L) =
Lηi

ηi
,

for some exponent ηi > 1. This specification implies that marginal labor costs increase with
the scale of input, capturing increasing difficulty or expense in scaling up labor beyond a
certain level — due, for example, to overtime pay, training needs, or capital constraints.

Given a price vector P ∈ RN
≥0 and a carbon price PE ∈ R>0, the firm’s profit function is

defined as total revenue minus total cost:

(4) Πi(P, PE ,qi, Ei, Li) := PiFi(qi, Ei, Li)− Ci(P, PE ,qi, Ei, Li).

The firm’s profit maximization problem then consists of choosing an optimal input vector
(q∗

i , E
∗
i , L

∗
i ) that maximizes profits:

(5) Πi(P, PE) := max
qi,Ei,Li

Πi(P, PE ,qi, Ei, Li).
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We now establish the existence and uniqueness of an optimal solution to the profit
maximization problem, adapting classical results from microeconomic theory to our setting.

Proposition 2.6. Suppose the production and labor cost functions satisfy either Assump-
tions 2.1 (a) and 2.3, or Assumptions 2.1 (b), 2.3 and 2.4. Then, Problem (5) admits

a maximiser x∗
i = (q∗

i , E
∗
i , L

∗
i ) ∈ RN+2

≥0 , for any price vector P ∈ RN
>0 and any carbon

price PE > 0. Moreover, if the production function Fi is strictly concave and the labor cost
function Wi is strictly convex, the solution is unique.

If the production function Fi satisfies Assumption 2.1 (b), its homogeneity property
allows the maximized profit to be expressed in terms of the convex conjugate of the labor
cost function, denoted as W ∗

i : R → R and defined by

W ∗
i (y) = max

L≥0
{L · y −Wi(L)} , for any y ∈ R.(6)

Under Assumptions 2.3 and 2.4, the maximum in (6) is attained, so that W ∗
i is a proper

convex function satisfying W ∗
i (y) = 0 for all y ≤ 0.

Proposition 2.7. Suppose the production and labor cost functions satisfy Assumptions 2.1
(b), 2.3, and 2.4. Then, the maximized profit from Problem (5) satisfies

Πi(P, PE) = W ∗
i

(
Π̃i(P, PE)

)
,

where the function Π̃i is defined as the value of the following auxiliary maximization prob-
lem:

Π̃i(P, PE) = max
q̃i,Ẽi

{
PiFi(q̃i, Ẽi, 1)−

N∑
j=1

Pj q̃ij − PEẼi

}
.(7)

Moreover, if Wi is strictly convex and differentiable, the optimal input vector (q∗
i , E

∗
i , L

∗
i )

is given by

L∗
i = (W ′

i )
−1
(
Π̃i(P, PE)

)
, q∗ij = q̃∗ijL

∗
i for j = 1, . . . , N, E∗

i = Ẽ∗
i L

∗
i .

The function Π̃i(P, PE) admits a natural economic interpretation: it represents the
maximum profit per unit of labor, before deducting labor costs. For CES production
technologies, this quantity can be computed explicitly.

Proposition 2.8 (Explicit expression under CES technology). Assume the production
function takes the CES form:

Fi(qi, Ei, Li) = Ai

 N∑
j=1

αijq
−ρi
ij + αiEE

−ρi
i + αiLL

−ρi
i

− 1
ρi

, with ρi > 0.

Then the optimal normalized input vector (q̃∗
i , Ẽ

∗
i ) is given as follows:
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• If

N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

+

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1

≤ 1,

then the optimal production per unit of labor, Q̃∗
i := Fi(q̃

∗
i , Ẽ

∗
i , 1), is given by

Q̃∗
i = Aiα

−1/ρi
iL

1−
N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

−

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1


1
ρi

.

The corresponding optimal inputs are

q̃∗ij = Q̃∗
i

(
PjA

ρi
i

Piαij

)− 1
ρi+1

, Ẽ∗
i = Q̃∗

i

(
PEA

ρi
i

PiαiE

)− 1
ρi+1

.

In this case, the maximum profit per unit of labor is

Π̃i(P, PE) = PiAiα
−1/ρi
iL

1−
N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

−

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1


ρi+1

ρi

.

• Otherwise, the optimum is attained at q̃∗ij = 0 for all j = 1, . . . , N , Ẽ∗
i = 0, and the

resulting optimal production is Q̃∗
i = 0.

Proposition (2.7) can then be applied to explicitly compute the optimal profit and the
corresponding input allocation, provided the labor cost function admits a known convex
conjugate — for instance, the power function in Example 2.5.

3. Price formation and competitive equilibrium in the static setting

In this section, we develop a static equilibrium model of a productive economy composed
of N sectors, where each sector is represented by a single firm that produces a distinct
good. The economy’s price system is determined by imposing market-clearing conditions:
the total supply of each good must equal the total demand, which includes both final
consumption and intermediate input requirements from all sectors. We then formalize
the interaction among firms through the notion of competitive equilibrium, defined as a
collection of prices and input allocations such that (i) each firm maximizes its profit given
prices, and (ii) all markets clear.

We establish the existence of such a competitive equilibrium by characterizing it as the
saddle point of a central planner’s minimax problem. This variational formulation pro-
vides an economic interpretation aligned with the First Fundamental Theorem of Welfare
Economics, emphasizing the efficiency of equilibrium allocations.

Each sector faces external demand from consumers and may also compete with an ex-
ternal source of supply. To model this, we introduce sector-specific net demand functions
Di : R≥0 → R, where Di(P ) denotes the difference between external demand and external
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supply for the i-th sector at a given price P ≥ 0. These functions may take both positive
and negative values and are assumed to satisfy the following conditions.

Assumption 3.1 (Properties of net demand functions). For every i = 1, . . . , N , the net
demand function Di is strictly decreasing and continuous on R>0. Moreover, it satisfies
the following asymptotic conditions:

lim
P→0

Di(P ) = ∞, lim
P→∞

Di(P ) ≤ 0.

This assumption encompasses both a closed economy without exogenous supply and an
open economy with external supply. In the closed economy case, we have Di(P ) > 0 for
all P ≥ 0, and the limiting value as the price tends to infinity approaches zero.

Example 3.2 (Power demand functions). The following examples illustrate modifications
of the standard power demand function that account for the presence of external supply,
while satisfying Assumption 3.1.

A first class of net demand functions is given by:

Di(P ) = aiP
−ϵi − bi, with ai, ϵi > 0, bi ≥ 0,

where the first term models consumer demand with elasticity ϵi, and the constant term bi
represents a finite external supply.

A second variant incorporates a price-dependent external supply:

Di(P ) = aiP
−ϵi − biP

δi , with ai, ϵi, δi > 0, bi ≥ 0.

Here, the external supply grows unboundedly with the price, so that the net demand
diverges to −∞ as P → ∞.

In both cases, the closed economy scenario with no external supply is recovered by
setting bi = 0.

Let Q = (qij)i,j=1,...,N represent the matrix of quantities exchanged among companies.

Using this notation, we define an allocation matrix (Q,E,L) ∈ RN(N+2).
Under the assumption of no market frictions, the price vector must satisfy the following

market clearing condition:

(8) Fi(qi, Ei, Li) = Di(Pi) +
N∑
j=1

qji, i = 1, . . . , N.

for any fixed (Q,E,L) ∈ RN(N+2).
The left-hand side of the equation represents the total endogenous supply of good i,

which equals the output of sector i. The right-hand side represents the total net demand
for good i, comprising two components: the exogenous net demand, driven by the demand
function Di, and the endogenous or intermediate demand, which reflects the quantity of
good i demanded by all sectors, including sector i itself.

We now introduce the notion of competitive equilibrium within our framework.

Definition 3.3 (Competitive equilibrium). A competitive equilibrium (CE) is a vector

(P∗,Q∗,E∗,L∗) ∈ RN
≥0 × RN(N+2)

≥0 of prices and inputs such that, for each i = 1, . . . , N :
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(i) The price P ∗,i satisfies the market clearing condition (8).
(ii) The input vector (q∗

i , E
∗
i , L

∗
i ) solves the profit maximization problem (5).

To establish the existence of a CE, we consider the following minimax problem:

(9) min
P

N∑
i=1

max
qi,Ei,Li

{
PiFi(qi, Ei, Li)−

N∑
j=1

Pjqij − PEEi −Wi(Li)−∆i(Pi)

}
,

where ∆i(P ) :=
∫ P
1 Di(z) dz denotes the consumer surplus function of sector i up to a

given price P ≥ 0.
By interchanging the summation and maximization operators, we reformulate Prob-

lem (9) as:

(10) min
P

max
Q,E,L

L(P,Q,E,L),

where L : RN
≥0 × RN(N+2) → R is the Lagrangian function defined by:

(11) L(P,Q,E,L) :=
N∑
i=1

{
PiFi(qi, Ei, Li)−

N∑
j=1

Pjqij − PEEi −Wi(Li)−∆i(Pi)

}
.

The Lagrangian function captures the total surplus of the economy: it aggregates firms’
profits while subtracting the consumer surplus terms ∆i(Pi), which appear with a negative
sign to reflect that consumers only demand goods in this model and do not share in firms’
profits.

Remark 3.4 (On the consumer surplus function). Under Assumption 3.1, the consumer
surplus functions ∆i : R≥0 → R are well-defined for all non-negative prices, with the
convention:

∆i(P ) = −
∫ 1

P
Di(z) dz, for all P ≤ 1.

In particular, limP→0+ ∆i(P ) exists, though it may equal −∞. Consequently, ∆i is upper
semi-continuous over R≥0.

Additionally, since the demand functions Di are continuous on R>0, each consumer
surplus function ∆i is continuously differentiable on this domain.

Finally, because each demand function Di is strictly decreasing, the consumer surplus
functions ∆i are strictly concave.

From standard convex analysis (see, e.g., (Ekeland and Témam, 1999, Ch. 6)), the
following inequality holds:

(12) sup
Q,E,L

inf
P

L(P,Q,E,L) ≤ inf
P

sup
Q,E,L

L(P,Q,E,L),

with strict inequality generally occurring. The right-hand side corresponds to the competi-
tive equilibrium formulation, where each agent optimizes its own objective given prevailing
market prices and the decisions of other agents. In contrast, the left-hand side — cor-
responding to the minimax problem (10) — reflects the perspective of a central planner
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who simultaneously allocates inputs and sets prices in order to maximize total economic
surplus, as represented by the Lagrangian (11).

We now recall the following well-known definition, tailored to our context.

Definition 3.5 (Saddle point). A vector (P∗,Q∗,E∗,L∗) ∈ RN
≥0 × RN(N+2)

≥0 is called a

saddle point of L on RN
≥0 × RN(N+2)

≥0 if:

L(P∗,Q,E,L) ≤ L(P∗,Q∗,E∗,L∗) ≤ L(P,Q∗,E∗,L∗)

for all P ∈ RN
≥0 and (Q,E,L) ∈ RN(N+2)

≥0 .

In particular, a vector (P∗,Q∗,E∗,L∗) is a saddle point if and only if satisfies the Min-
imax equality:

(13) L(P∗,Q∗,E∗,L∗) = max
Q,E,L

min
P

L(P,Q,E,L) = min
P

max
Q,E,L

L(P,Q,E,L).

The following lemma establishes a link between the notion of a saddle point of L and
competitive equilibrium. The proof is provided in Appendix B.

Lemma 3.6. Suppose that Assumptions 3.1 holds. Then, (P∗,Q∗,E∗,L∗) ∈ RN
>0 ×

RN(N+2)
≥0 is a saddle point of L if and only if it is a competitive equilibrium.

To establish the existence of a CE, an additional assumption is required to ensure market
viability. Specifically, there must exist a vector of positive prices and a production schedule
that allows for profitable production in all sectors when labor and emission costs are zero.

Assumption 3.7 (Market Viability). There exists a triple (Q,E,L) ∈ RN(N+2)
≥0 and a

vector of positive prices P ∈ RN
>0 such that, for each i = 1, . . . , N ,

P iFi(qi, Ei, Li)−
N∑
j=1

P jqij > 0.

Alternatively, one may assume that external supply is unbounded, which guarantees
that net demand decreases without bound as the price grows arbitrarily large.

Assumption 3.8 (Unbounded External Supply). For each i = 1, . . . , N , the net demand
function Di satisfies the following asymptotic condition:

lim
P→∞

Di(P ) = −∞.

Each of the above assumptions provides a sufficient condition for the existence of a
competitive equilibrium, as summarized in the following theorem.

Theorem 3.9. Suppose that the production and labor cost functions satisfy either Assump-
tions 2.1 (a) and 2.3, or Assumptions 2.1 (b), 2.3, and 2.4. Furthermore, assume that the
net demand functions satisfy Assumption 3.1 and that either Assumption 3.7 or 3.8 holds.

Then, there exists a CE (P∗,Q∗,E∗,L∗) ∈ RN
>0 ×RN(N+2)

≥0 , and the corresponding price
system is unique. Moreover, if the production functions Fi are strictly concave and the
labor cost functions Wi are strictly convex, then the CE is also unique.
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Proof. By Lemma 3.6, establishing the existence and uniqueness of a CE is equivalent to

proving the existence and uniqueness of a saddle point for L on RN
>0 × RN(N+2)

≥0 . To this

end, we verify the assumptions of the minimax theorem (see Proposition VI.2.4 in Ekeland
and Témam (1999)).

We first express the Lagrangian function L as:

(14) L(P,Q,E,L) =

N∑
i=1

ℓi(P,qi, Ei, Li),

where the functions ℓi : RN
≥0 × RN+2

≥0 → R are defined by:

ℓi(P,qi, Ei, Li) := PiFi(qi, Ei, Li)−
N∑
j=1

Pjqij − PEEi −Wi(Li)−∆i(Pi), i = 1, . . . , N.

Given the semi-continuity assumptions on Fi and Wi, the function ℓi is upper semi-
continuous in (qi, Ei, Li). Additionally, since ∆i is upper semi-continuous, ℓi is lower
semi-continuous with respect to P. Consequently, the Lagrangian L satisfies the necessary
continuity properties: it is upper semi-continuous with respect to the inputs and lower
semi-continuous with respect to the prices.

Furthermore, since Fi and ∆i are concave, and Wi is convex, each function ℓi is concave
in (qi, Ei, Li) and convex in P. Consequently, the Lagrangian function L is concave with
respect to (Q,E,L) and convex with respect to P.

Next, as demonstrated in the proof of Proposition 2.6, the profit function Πi tends to
−∞ as ∥(qi, Ei, Li)∥ → ∞, for any fixed price vector P ∈ RN

>0. Consequently, for each
i = 1, . . . , N ,

ℓi(P,qi, Ei, Li) → −∞, as ∥(qi, Ei, Li)∥ → ∞.

This implies that

L(P,Q,E,L) → −∞, as ∥(Q, E, L)∥ → ∞.

for any price vector P ∈ RN
≥0.

To complete the proof of the existence of a saddle point, it remains to establish that the
Lagrangian satisfies the following coercivity condition:

(15) L(P,Q,E,L) → +∞ as ∥P∥ → ∞
for some (Q,E,L) ∈ RN(N+2).

Assume that Assumption 3.7 holds. Let (Q,E,L) and P be as given in that assumption.
Define a sector k such that

Pk

P k

≥ Pi

P i

, for all i = 1, . . . , N.

Using this selection, we derive the following lower bound for the Lagrangian:

L(P,Q,E,L) ≥ Pk

P k

(
P kFk(qk, Ek, Lk)−

N∑
j=1

P jqkj

)
− C −

N∑
i=1

∆i(Pi),
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where C < ∞ is a constant independent of P.
Furthermore, by Assumption 3.1, for every ε > 0, there exists a constant C ′ such that

∆i(P ) ≤ C ′ + εP, for all P > 0.

Since Pk ≥ c∥P∥ for some constant c > 0, it follows that

L(P,Q,E,L) ≥ c∥P∥

(
P kFk(qk, Ek, Lk)−

N∑
j=1

P jqkj −
ε

c

)
− C − C ′.

By Assumption 3.7, ε can be chosen sufficiently small to ensure that the term in parentheses
remains strictly positive. Consequently, the coercivity condition (15) is satisfied.

Assume that the net demand functions satisfy the asymptotic condition specified in
Assumption 3.8. Then, for every ε > 0, there exist constants C ∈ R and P̂ > 0 such that

∆i(P ) ≤ C − εP, for all P ≥ P̂ .

This implies that, for sufficiently large ∥P∥, the Lagrangian satisfies the following lower
bound:

L(P,Q,E,L) ≥
N∑
i=1

{
PiFi(qi, Ei, Li)−

N∑
j=1

qijPj + εPi

}
+ C ′

for some constant C ′ that is independent of P.
By choosing ε sufficiently large, the coercivity condition (15) is satisfied.
This implies that the assumptions of Proposition VI.2.4 in Ekeland and Témam (1999)

hold, allowing us to conclude that

max
Q,E,L

min
P

L(P,Q,E,L) = min
P

max
Q,E,L

L(P,Q,E,L),

and that a saddle point (P∗,Q∗,E∗,L∗) ∈ RN
≥0 × RN(N+2)

≥0 exists.

To apply Lemma 3.6, it remains to verify that P∗ ∈ RN
>0. Suppose, for contradiction,

that P ∗
i = 0 for some i ∈ {1, . . . , N}. For an arbitrary h > 0, define the perturbed price

vector P∗(h) by

P ∗
j (h) = P ∗

j for j ̸= i, and P ∗
i (h) = h.

Since the Lagrangian L is continuously differentiable on RN
>0, the mean value theorem

implies the existence of a vector v(h) ∈ RN
≥0 such that

vj(h) = P ∗
j for j ̸= i, and vi(h) ∈ (0, h),

for which the following first-order expansion holds:

L(P∗(h),Q,E,L) = L(P∗,Q,E,L) + h
∂

∂Pi
L(v(h),Q,E,L)

= L(P∗,Q,E,L) + h

Fi(qi, Ei, Li)−
N∑
j=1

qji −Di(vi(h))

 .
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By Assumption 3.1, h can be chosen sufficiently small so that the expression in paren-
theses on the second line is strictly negative. Consequently,

L(P∗(h),Q,E,L) < L(P∗,Q,E,L),

contradicting the optimality of P∗ as a minimizer of L. Therefore, we conclude that
P∗ ∈ RN

>0.
Finally, since the Lagrangian is strictly convex with respect to P, the optimal price

system P∗ is unique. Furthermore, if the production functions Fi are strictly concave and
the labor cost functions Wi are strictly convex, then the Lagrangian function L is strictly
concave with respect to (Q,E,L). These strict conditions ensure that if a saddle point —
and hence a CE — exists, it must be unique. □

Remark 3.10 (Connection to welfare economics). Theorem 3.9 establishes an equivalence
between a competitive economy and a central planner, as reflected in the two sides of the
minimax identity (13). That is, whenever a saddle point exists, the decentralized market
equilibrium coincides with the solution chosen by a social planner seeking to maximize total
welfare. In particular, the price system that emerges from the decentralized mechanism —
where supply and demand are balanced — matches the price vector selected by the planner
in solving the centralized problem (10).

This one-to-one correspondence between competitive equilibria and saddle points of L
on RN

>0 × RN(N+2)
≥0 embodies the spirit of the first fundamental theorem of welfare eco-

nomics, reflects the spirit of the first fundamental theorem of welfare economics, in which
competition and the absence of externalities are key to ensuring that decentralized market
allocations are Pareto efficient (see (Mas-Colell et al., 1995, Proposition 10.D.1)).

In our setting, in particular, externalities are fully internalized through the carbon pric-
ing mechanism.

4. Mean-field game approach to a dynamic market model with defaults

In this section, we extend the framework developed in Sections 2 and 3 to a dynamic
market model over the time interval [0, T ]. The economy consists of N sectors, each com-
prising a continuum of firms that may default at uncertain future times. This formulation,
which models an economy with multiple sectors and infinitely many firms per sector, has
been explored in the context of portfolio optimization, e.g., in Borkar and Suresh Kumar
(2010). As in that work and many others applying mean-field game (MFG) theory, we do
not analyze the convergence from a finite-agent system to the mean-field limit, but instead
work directly with the limiting model.

We consider an endogenous default framework in which each individual agent in each
sector optimally selects its production inputs and the timing of market exit to maximize
expected profits over [0, T ].

To streamline the equilibrium analysis, we adopt the linear programming approach in-
troduced in Bouveret et al. (2020) and Dumitrescu et al. (2021), which reformulates the
firms’ optimal stopping problem as an equivalent linear program. The central objects of
interest are the distributions of states (labor costs) for non-defaulted firms in each sector,
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as well as the joint distributions of exit times and labor cost trajectories —referred to as
exit measures.

A linear programming MFG Nash equilibrium is defined as a configuration of prices,
state distribution flows, and exit measures that jointly satisfy a mean-field version of the
market-clearing condition (8) and the generic agent’s profit-maximization problem in each
sector. The section concludes by proving the existence of such an equilibrium and the
uniqueness of the associated price system.

4.1. The optimal default problem of the generic firm. Throughout this section, we
fix a sector i ∈ {1, . . . , N} and focus on a generic firm within that sector.

Let (Ω,F ,F,P) be a stochastic basis, where the filtration F = (Ft)t∈[0,T ] satisfies the
usual conditions of right-continuity and completeness.

Let qi
t := (qi,jt )j=1,...,N denote the vector of intermediate inputs purchased, Ei

t the emis-
sions produced, and Li

t the labor employed by the generic firm in sector i per unit of time
at time t ∈ [0, T ].

The total output of this firm per unit of time at time t is given by

(16) Fi(q
i
t, E

i
t , L

i
t), t ∈ [0, T ].

We assume that the production function Fi satisfies the conditions of Assumption 2.1 (b)1.
We introduce an F-adapted stochastic process Xi = (Xi

t)t∈[0,T ] taking values in a sector-
specific state space Oi ⊆ R>0, and satisfying the following stochastic differential equation:

(17) dXi
t = αi(t,X

i
t) dt+ σi(t,X

i
t) dW

i
t , Xi

0 = xi ∈ Oi, t ∈ [0, T ],

where (W i)i=1,...,N are independent standard Brownian motions. The functions αi and σi,
representing the drift and volatility of Xi, satisfy the technical conditions stated below.

Assumption 4.1 (Properties of Drift and Volatility Functions). The functions αi : [0, T ]×
Oi → R and σi : [0, T ] × Oi → R>0 ensure the existence of a unique strong solution to
Equation (17), such that:

sup
t∈[0,T ]

E
[
|Xi

t |p
]
< ∞, P(τOi > T ) = 1,

for some p ≥ 1, where τOi denotes the first exit time of Xi from the domain Oi.
In addition, the following conditions hold:

(1) The functions αi(t, x) and σi(t, x) are jointly measurable and continuous in x,
uniformly in t ∈ [0, T ];

(2) There exist constants M > 0 and β ∈ [0, 1] such that, for all (t, x) ∈ [0, T ]×Oi,

|αi(t, x)| ≤ M, σi(t, x)
2 ≤ M(1 + xβ).

1In the static model, the main results hold under both Assumption 2.1 (a) and Assumption 2.1 (b). How-
ever, in the dynamic stochastic framework with mean-field interaction, the equilibrium analysis becomes
significantly more challenging under Assumption 2.1 (a). Assuming production functions with constant
returns to scale allows the maximized profit of each firm to be expressed explicitly in terms of its labor
cost function, as illustrated in Example 2.8. This simplification streamlines both the theoretical analysis of
equilibria and their numerical approximation.
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Remark 4.2. Assumption 4.1 does not require Lipschitz continuity of the drift and volatil-
ity functions. While Lipschitz continuity — combined with measurability and sublinear
growth — is a standard sufficient condition for the existence of a unique strong solution
to the SDE (17), we relax this requirement to allow for a broader class of dynamics. In
particular, this class includes processes such as the Cox-Ingersoll-Ross (CIR) process:

dXi
t = αi(θi −Xi

t) dt+ σi

√
Xi

t dW
i
t , Xi

0 = xi ∈ R>0, t ∈ [0, T ],

where αi denotes the mean-reversion speed and θi the long-run mean level.
For the CIR process, it is well known that pathwise uniqueness and non-negativity of

solutions are guaranteed under Feller’s condition:

2αiθi > σ2
i .

A detailed discussion can be found in (Jeanblanc et al., 2009, Ch. 6).

We assume that prices and the carbon tax are deterministic and represented as time-
dependent functions:

Pi : [0, T ] → R≥0, PE : [0, T ] → R>0.

Firms are assumed to operate under full information: at each time t, they observe the
history of the price vector, carbon tax, and their own state process up to time t.

We define the instantaneous cost function of the generic firm in sector i by

(18) Ci(P,qi, Ei, Li, PE , x) =
N∑
j=1

Pjqij + PEEi +Wi(Li) + xLi,

for any price vector P = (P1, . . . , PN ) ∈ RN
≥0, input vector (qi, Ei, Li) ∈ RN+2

≥0 , carbon
price PE ∈ R>0, and state variable x ∈ Oi.

The function Wi : R≥0 → R>0, representing the baseline labor cost in sector i, satisfies
Assumptions 2.3 and 2.4. The final term in Equation (18) captures additional fluctuations
in wage levels driven by the state process Xi, which is why we also refer to it as the labor
cost process.

The instantaneous profit function of sector i is defined by

(19) Πi(P,qi, Ei, Li, PE , x) = PiFi(qi, Ei, Li)− Ci(P,qi, Ei, Li, PE , x),

for any price vector P ∈ RN
≥0, input vector (qi, Ei, Li) ∈ RN+2

≥0 , carbon price PE ∈ R>0,
and state variable x ∈ Oi. The corresponding maximized instantaneous profit function is
given by

(20) Πi(P, PE , x) := max
qi,Ei,Li

Πi(P,qi, Ei, Li, PE , x).

The following proposition shows that the function Πi is well defined and admits an
explicit expression in terms of W ∗

i . The proof is identical to that of Propositions 2.6
and 2.7.

Proposition 4.3. Suppose that the production and labor cost functions satisfy Assump-
tions 2.1(b), 2.3, and 2.4. Then the following statements hold:
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(i) The optimization problem (20) admits a solution x∗
i = (q∗

i , E
∗
i , L

∗
i ) ∈ RN+2

≥0 for all

price vectors P ∈ RN
>0, carbon prices PE ∈ R>0, and states x ∈ Oi. Moreover,

if the production function Fi is strictly concave and the labor cost function Wi is
strictly convex, the solution is unique.

(ii) The maximized instantaneous profit function Πi is given by

Πi(P, PE , x) = W ∗
i

(
Π̃i(P, PE)− x

)
,

where Π̃i is defined in Equation (7).
(iii) If the labor cost function Wi is strictly convex and differentiable, the optimal inputs

are given by

L∗
i = (W ′

i )
−1
(
Π̃i(P, PE)− x

)
, q∗ij = q̃∗ijL

∗
i , j = 1, . . . , N, E∗

i = Ẽ∗
i L

∗
i ,

where (q̃∗ij)j=1,...,N and Ẽ∗
i are the solutions of the auxiliary problem defined by

Equation (7).

As outlined in the introduction, each firm may default at a random time. The default
mechanism is modeled as an optimal stopping problem, in which firms simultaneously
choose the trajectory of their input mix and the optimal timing of market exit to maximize
expected profits up to default. We assume that the generic firm in sector i issues debt
contracts with maturity T , which provide bondholders with a constant coupon stream κi
over the interval [0, T ]. Upon default, the firm incurs a fixed cost Ki, subject to exponential
depreciation at rate γi.

The expected profit maximization problem for the generic firm in sector i ∈ {1, . . . , N}
is given by:

max
τi∈T ([0,T ])

max
(qi

t,E
i
t ,L

i
t)t≥0

Ex

[∫ τi

0
e−rt

{
Πi(P(t), PE(t), X

i
t)− κi

}
dt−Kie

−(r+γi)τi

]
,

where T ([0, T ]) denotes the set of F-stopping times on [0, T ], Ex denotes expectation con-
ditional on Xi

0 = x, and r is the capital discount rate.
Using the definition of the maximized instantaneous profit (20), this problem can be

equivalently rewritten as:

(21) vi(P, PE , x) := max
τi∈T ([0,T ])

Ex

[∫ τi

0
e−rt

{
Πi(P(t), PE(t), X

i
t)− κi

}
dt−Kie

−(r+γi)τi

]
.

The value function vi(P, PE , x) represents the equity value of firm i, net of the expected
discounted liquidation cost incurred at the time of exit. In problems with endogenous
default, the optimal default policy typically takes the form of a threshold strategy (see for
example Leland and Toft (1996),Bélanger et al. (2004), Schmidt and Novikov (2008), Frey
and Schmidt (2009) among many others). That is, the firm exits the industry and liqui-
dates its assets immediately once the labor shock process (Xi

t)t≥0 crosses an endogenously
determined upper barrier.

However, in optimal stopping mean-field games, it has been observed (Bertucci, 2018)
that an equilibrium with pure (threshold-type) stopping times does not always exist. To
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capture all equilibria, it is necessary to consider a broader class of strategies, namely ran-
domized stopping times. This implies that, at equilibrium, agents may exit at random
times within the interval between the minimal optimal stopping time τ− and the maxi-
mal optimal stopping time τ+, rather than exiting precisely at the first hitting time of a
threshold. As a result, a characterization of equilibrium solely in terms of stopping times
or default thresholds is not always feasible, and alternative methods have been developed.

In particular, the linear programming approach introduced by Bouveret et al. (2020)
circumvents the need to solve individual optimization problems by focusing directly on
the evolution of population distributions. This avoids the technical challenges posed by
randomized stopping strategies.

4.2. Linear programming formulation. Within the linear programming framework, we
reformulate the optimal stopping problem (21) as a linear program over a suitable space
of measures. We begin by recalling the following definition from Bouveret et al. (2020),
suitably adapted to our setting.

Definition 4.4 (Space of Bounded Measure Flows). Let p ≥ 1 and O ⊆ R. We define
Vp(O) as the space of flows m = (mt(·))t∈[0,T ] of bounded measures on O, satisfying the
following properties:

(1) For every t ∈ [0, T ], mt is a bounded measure on O;
(2) For every Borel set A ∈ B(O), the mapping t 7→ mt(A) is measurable;
(3) The p-moment condition holds:∫ T

0

∫
O
(1 + xp)mt(dx)dt < ∞.

Each such flow m : [0, T ] × B(O) → R≥0 induces a bounded measure on [0, T ] × O via
the product mt(dx)dt. We denote by Mp([0, T ] × O) the space of bounded measures on

[0, T ]×O that satisfy Condition (3).
We equip Mp([0, T ]×O) with the topology of weak convergence induced by continuous

functions with p-growth in x ∈ O, denoted by τp. The space Vp(O) is endowed with
the corresponding topology induced by the weak convergence of associated measures, also
denoted by τp.

Remark 4.5 (On the topology τp). The topology τp generalizes the classical weak topology
by allowing test functions with polynomial growth. Specifically, a sequence (νn)n≥1 ⊂
Mp([0, T ]×O) converges to a limit ν in the topology τp if∫ T

0

∫
O
f(t, x) νn(dt, dx) −→

∫ T

0

∫
O
f(t, x) ν(dt, dx), as n → ∞,

for all test functions f : [0, T ] × O → R that are measurable in t, continuous in x, and
satisfy a p-growth condition of the form

|f(t, x)| ≤ C(1 + xp), for all (t, x) ∈ [0, T ]×O,

for some constant C > 0.
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The space Vp(O), endowed with the topology τp, is Hausdorff, locally convex, and metriz-
able. For further details, we refer the reader to Dumitrescu et al. (2023).

For each sector i = 1, . . . , N , we associate a pair (mi, µi) ∈ Vp(Oi) ×Mp([0, T ] × Oi),
representing the dynamics of labor costs and defaults among firms in that sector. Specif-
ically, mi

t denotes the distribution of labor costs across firms that have not defaulted by
time t, while µi encodes the joint distribution of default times and labor costs. Accordingly,
we refer to the collection (mi)i=1,...,N as the occupation measure flows, and (µi)i=1,...,N as
the exit measures.

The pair (mi, µi) satisfies a linear constraint induced by the dynamics of the labor
cost process Xi. Assuming that these measures admit sufficiently regular densities, the
Fokker–Planck equation for the density flow (mi

t)t∈[0,T ] reads:

∂mi
t

∂t
(t, x) = L ∗

i m
i
t(t, x)− µi(t, x),

where L ∗
i is the adjoint of the generator of the diffusion process Xi, given by

Lif(t, x) = αi(t, x)
∂f

∂x
(t, x) +

1

2
σ2
i (t, x)

∂2f

∂x2
(t, x),

L ∗
i f(t, x) = − ∂

∂x

(
αi(t, x)f(t, x)

)
+

1

2

∂2

∂x2
(
σ2
i (t, x)f(t, x)

)
.

In other words, the single-agent dynamics (17) is replaced by a Fokker–Planck equation
governing the evolution of the population density, and the agent’s stopping time is replaced
by the exit measure µi, which appears as a killing term and determines the exit behavior
of the entire population.

In practice, however, the measures mi and µi may not possess the regularity required
to satisfy the Fokker–Planck equation in its strong form. For instance, when agents exit
upon hitting a default threshold, the measure µi is supported on this threshold and lacks
a density. Therefore, we work with a weak formulation of the equation, defined using
appropriate test functions. The following definition is derived from the Fokker–Planck
equation by multiplying it with a test function and applying integration by parts.

Definition 4.6. For each i = 1, . . . , N and initial distribution m0, let Ri(m0) denote the
subset of Vp(Oi)×Mp([0, T ]×Oi) consisting of all pairs (m,µ) satisfying the identity:∫ T

0

∫
Oi

u(t, x)µ(dt, dx) =

∫
Oi

u(0, x)m0(dx)

+

∫ T

0

∫
Oi

{
∂u

∂t
(t, x) + Liu(t, x)

}
mt(dx)dt,

(22)

for all test functions u ∈ C1,2
b ([0, T ]×Oi).

A pair (m,µ) ∈ Ri(m0) characterizes, in a weak sense, the evolution of the distribution
of the labor cost process for a generic firm in sector i, governed by the stochastic differential
equation (17) and stopped at a random time. Importantly, for any (m,µ) ∈ Ri(m0), the
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flow (mt)t∈[0,T ] does not consist of probability measures: its total mass decreases over time
as firms exit the system.

The following lemma establishes the compactness of the set Ri(m0), a key ingredient in
proving the existence of an equilibrium; see Appendix C for the proof.

Lemma 4.7. Suppose Assumption 4.1 holds. Fix i ∈ {1, . . . , N} and an initial distribution
m0 satisfying ∫

Oi

(1 + xp
′
)m0(dx) < ∞ for some p′ > p.

Then the set Ri(m0) is weakly2 compact in Vp(Oi)×Mp([0, T ]×Oi).

In the linear programming formulation of the optimal stopping problem, the optimization
over stopping times is recast as an optimization over occupation flows and exit measures
(mi, µi). Specifically, the firm’s expected profit maximization problem becomes:

max
(mi,µi)∈Ri(mi

0)

∫ T

0

∫
Oi

e−rt
{
Πi(P(t), PE(t), x)− κi

}
mi

t(dx) dt

−
∫ T

0

∫
Oi

Kie
−(r+γi)tµi(dt, dx).

(23)

The connection between the original optimal stopping problem (21) and its linear pro-
gramming counterpart (23) is rigorously established in Bouveret et al. (2020) and Du-
mitrescu et al. (2021). Specifically, defining the value functional

Γi(m
i, µi,P, PE) :=

∫ T

0

∫
Oi

e−rt
{
Πi(P(t), PE(t), x)− κi

}
mi

t(dx)dt

−
∫ T

0

∫
Oi

Kie
−(r+γi)tµi(dt, dx),

it can be shown, under additional assumptions, that the following identity holds:

Γ∗
i (P, PE) := max

mi,µi∈Ri(mi
0)
Γi(m

i, µi,P, PE) =

∫
Oi

vi(P, PE , x)m
i
0(dx),

where vi(P, PE , x) is the value function previously introduced in the optimal stopping
problem (21).

To complete the linear programming formulation, we specify the mechanism for equi-
librium price formation. Analogous to the static model in Section 3, we introduce time-
inhomogeneous net demand functions Di : [0, T ] × R≥0 → R for each good i = 1, . . . , N .
The value Di(t, Pi(t)) at time t represents the net external demand for good i at the current
time, defined as the difference between external demand and external supply. The time
dependence accounts for evolving factors such as population growth or inflation.

We adopt the following assumption, which mirrors the demand conditions in the static
model.

2Here, ’weakly’ refers to compactness with respect to the topology τp ⊗ τp.
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Assumption 4.8 (Properties of Net Demand Functions). For each i = 1, . . . , N , the net
demand function Di is continuous and strictly decreasing in the price variable. Moreover,
it satisfies the limiting behavior:

lim
P→0

Di(t, P ) = ∞, lim
P→∞

Di(t, P ) ≤ 0,

uniformly in t ∈ [0, T ].

For each good i = 1, . . . , N , the mean-field market-clearing condition reads:

(24)

∫
Oi

Fi(qi(t, x), Ei(t, x), Li(t, x))m
i
t(dx) = Di(t, Pi(t)) +

N∑
j=1

∫
Oi

qji(t, x)m
j
t (dx),

for any input matrix function (Q,E,L) : [0, T ] × Oi → RN(N+2)
≥0 , and for any vector of

occupation measure flows m := (mi)i=1,...,N .
The left-hand side of (24) represents the total endogenous supply of good i from the

mean-field firm at time t, computed as the integral of the production function over the
distribution of active (non-defaulted) agents. The right-hand side corresponds to the to-
tal net demand, including both external and endogenous contributions, again integrated
against the current occupation measures.

4.3. Linear programming MFG Nash equilibrium. We now introduce the notion
of market equilibrium within the linear programming MFG framework. To this end, let
R(m0) denote the set of all pairs of measure flows and bounded measures (m,µ) such that
(mi, µi) ∈ Ri(mi

0) for each i = 1, . . . , N .

Definition 4.9 (Space of Price Vector Functions). Let q > 1. Define Pq ⊂ Lq([0, T ];RN )
as the space of measurable functions P : [0, T ] → RN

≥0, endowed with the topology induced

by the Lq([0, T ])-norm. Let P+
q denote the subspace of Pq consisting of functions whose

components are strictly positive almost everywhere on [0, T ].

Definition 4.10 (Linear Programming MFG Nash Equilibrium). A linear programming
MFG Nash equilibrium is a tuple (P∗,Q∗,E∗,L∗,m∗,µ∗) consisting of:

• A price vector function P∗ ∈ Pq, for some q > 1,

• An input matrix function (Q∗,E∗,L∗) : [0, T ]×Oi → RN(N+2)
≥0 ,

• A pair of measure flows and exit measures (m∗,µ∗) ∈ R(m0),

such that, for each i = 1, . . . , N :

(i) The price function P ∗
i satisfies the mean-field market-clearing condition (24).

(ii) The input allocation (q∗
i (t, x), E

∗
i (t, x), L

∗
i (t, x)) solves the firm’s instantaneous

profit maximization problem:

Πi(P(t), PE(t), x) := max
qi,Ei,Li

Πi(P(t),qi, Ei, Li, PE(t), x),

for each (t, x) ∈ [0, T ]×Oi.
(iii) The pair (mi,∗, µi,∗) ∈ Ri(mi

0) solves the linear programming MFG profit maxi-
mization problem (23).
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To establish the existence of a linear programming MFG Nash equilibrium, we adopt a
strategy analogous to that used for the static model in Section 3.

We define the Lagrangian function L : Pq ×R(m0) → R as follows:

L(P,m,µ) :=

N∑
i=1

∫ T

0

∫
Oi

e−rt
{
Πi(P(t), PE(t), x)− κi

}
mi

t(dx) dt

−
∫ T

0

∫
Oi

Kie
−(r+γi)tµi(dt, dx)−

∫ T

0
e−rt∆i(t, P

i(t)) dt,

(25)

where ∆i(t, P ) :=
∫ P
1 Di(t, z) dz denotes the consumer surplus function of sector i at time

t, evaluated up to price level P ≥ 0.
In analogy to Definition 3.5, we say that a triple (P∗,m∗,µ∗) ∈ Pq ×R(m0) is a saddle

point of L on Pq ×R(m0) if and only if it satisfies the Minimax equality:

(26) L(P∗,m∗,µ∗) = max
m,µ

min
P

L(P,m,µ) = min
P

max
m,µ

L(P,m,µ).

We first establish the connection between the notion of a saddle point of L and a linear
programming MFG Nash equilibrium. The proof is provided in Appendix C.

Lemma 4.11. Suppose the production, labor cost, and net demand functions satisfy As-
sumptions 2.1(b), 2.3, 2.4, and 4.8. Furthermore, assume that the production functions Fi

are strictly concave and the labor cost functions Wi are strictly convex and differentiable.
Let (P∗,m∗,µ∗) ∈ P+

q ×R(m0) be a saddle point of L. Additionally, let (qi,∗, Ei,∗, Li,∗)
be a solution to the instantaneous profit maximization problem (20).

Then, the tuple (P∗,m∗,µ∗,Q∗,E∗,L∗) constitutes a linear programming MFG Nash
equilibrium.

As in the static version of the model, the existence of a linear programming MFG
Nash equilibrium can be established under either the market viability Assumption (3.7)
or, alternatively, by imposing a growth condition on the net demand functions that ensures
external supply is sufficiently unbounded.

Assumption 4.12 (Growth condition on net demand functions). For each i = 1, . . . , N ,
the net demand function Di satisfies the following asymptotic condition:

lim
P→∞

Di(t, P )

P q−1
= −∞,

for some exponent q > 1, uniformly for all t ∈ [0, T ].

This condition ensures that external supply grows faster than P q−1 as prices tend to
infinity.

Together with additional conditions on the convex conjugates W ∗
i , Assumptions 3.7 and

4.12 provide sufficient conditions for the existence of a linear programming MFG Nash
equilibrium, as summarized in the following theorem.
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Theorem 4.13. Assume that the production, labor cost, and net demand functions satisfy
Assumptions 2.1 (b), 2.3, 2.4, and 4.8. Furthermore, suppose the production functions Fi

are strictly concave, and the labor cost functions Wi are strictly convex and differentiable.
Additionally, assume that Assumptions 4.1 holds, and that for each i = 1, . . . , N , the initial
distribution mi

0 satisfies∫
Oi

(1 + xp
′
)m0(dx) < ∞, for some p′ > p.

Finally, let q > 1 and suppose that one of the following conditions holds:

(1) Assumption 3.7 is satisfied, and there exist positive constants C1, C2 and y0 such
that for all i = 1, . . . , N ,

C1y
q ≤ |W ∗

i (y)| ≤ C2y
q, for y ≥ y0.

(2) The net demand functions Di satisfy Assumption 4.12 and W ∗
i (y) = O(yq) for all

i = 1, . . . , N .

Then, there exists a linear programming MFG Nash equilibrium (P∗,m∗,µ∗) ∈ P+
q ×

R(m0). Moreover, the equilibrium price system is unique up to sets of measure zero.

Proof. By Lemma 4.11, the existence of a linear programming MFG Nash equilibrium
reduces to establishing the existence of a saddle point for L. We will establish the existence
of a saddle point on P+

q × R(m0). To prove this, we follow the approach outlined in
Theorem 3.9 and verify that the Lagrangian function defined in (25) satisfies the criteria
of Proposition VI.2.3 in Ekeland and Témam (1999). The proof is structured in a series of
steps.

Step 1: Lower semi-continuity and convexity of L in P. By Assumption 4.8, the La-
grangian L(P,m,µ) is (strictly) convex with respect to P. To establish its lower semi-
continuity in the price variable, consider a sequence (Pn)n≥1 converging to a limit P in
Lq([0, T ]). Without loss of generality, we may assume (by selecting a subsequence if nec-
essary) that this convergence occurs almost everywhere on [0, T ]. By Fatou’s lemma, it
follows that, for each i = 1, . . . , N :

lim inf
n→∞

∫ T

0

∫ ∞

0
Πi(P

n(t), PE(t), x)m
i
t(dx)dt ≥

∫ T

0

∫ ∞

0
e−rtΠi(P(t), PE(t), x)m

i
t(dx)dt.

Next, Assumption 4.8 ensures that, for every ε > 0, there exist constants C > 0 such that:

∆i(t, P ) ≤ εP + C, for all P > 0.

uniformly over t ∈ [0, T ] and for each i = 1, . . . , N . Applying Fatou’s lemma again, we
obtain:

lim inf
n→∞

∫ T

0
e−rt{−∆i(t, P

n
i (t))}dt ≥

∫ T

0
e−rt{−∆i(t, Pi(t))}dt.

Combining these results, we deduce:

lim inf
n→∞

L(Pn,m,µ) ≥ L(P,m,µ), for any (m,µ) ∈ R(m0),
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Thus, we conclude that the Lagrangian L is lower semi-continuous with respect to the price
variable.

Step 2: Upper semi-continuity and concavity of L in (m,µ).
We now verify that the Lagrangian L satisfies the required properties as a function of

(m,µ) ∈ R(m0). By linearity, it is straightforward to observe that L is concave with
respect to (m,µ).

To establish that L is upper semi-continuous in (m,µ), let (mn,µn)n≥1 ⊂ R(m0) be a
sequence converging to (m,µ) ∈ R(m0) under the topology τNp ⊗ τNp . Moreover, consider
sequences of bounded continuous functions (Pm

E )m≥1 and (Pm)m≥1 that approximate PE

and P in Lq([0, T ]).
We now decompose L, explicitly highlighting its dependence on the carbon price PE :

L(P, PE ,m
n,µn) = L(P, PE ,m

n,µn)− L(Pm, Pm
E ,mn,µn)(27)

+ L(Pm, Pm
E ,mn,µn).(28)

To estimate the first term, we utilize the explicit form of the maximized profit function:

Πi(P, PE , x) = W ∗
i

(
Π̃i(P, PE)− x

)
.

Applying the convexity of the convex conjugate W ∗
i and the relative compactness of the

sequence (mi,n)n≥1 in the τ ip-topology (as established in Lemma 4.7), we obtain:

|L(P, PE ,m
n,µn)− L(Pm, Pm

E ,mn,µn)|

≤
N∑
i=1

∫ T

0

∫
Oi

∣∣∣W ∗
i

(
Π̃i(P(t), PE(t))− x

)
−W ∗

i

(
Π̃i(P

m(t), Pm
E (t))− x

)∣∣∣mi,n
t (dx)dt

≤
N∑
i=1

∫ T

0

∣∣∣W ∗
i

(
Π̃i(P(t), PE(t))

)
−W ∗

i

(
Π̃i(P

m(t), Pm
E (t))

)∣∣∣ ∫
Oi

mi,n
t (dx)dt

≤ C

N∑
i=1

∫ T

0

∣∣∣W ∗
i

(
Π̃i(P(t), PE(t))

)
−W ∗

i

(
Π̃i(P

m(t), Pm
E (t))

)∣∣∣ dt,
for some constant C > 0 independent of n.

By the definition of Π̃i and Assumption 2.1 (b), we have Π̃i(P) ≤ cPi, and since Π̃i

is convex as the pointwise supremum of linear functions, it follows that Π̃i is continuous.
Similarly, W ∗

i is a proper convex function and hence continuous.
Thus, by extracting a subsequence if necessary, we may assume that (Pm

E )m≥1 and
(Pm)m≥1 converge to their respective limits almost everywhere on [0, T ]. Consequently,

(29)
∣∣∣W ∗

i

(
Π̃i(P(t), PE(t))

)
−W ∗

i

(
Π̃i(P

m(t), Pm
E (t))

)∣∣∣→ 0, a.e. on [0, T ].

Moreover, under both conditions (1) and (2) of the theorem, the upper bound Π̃i(P) ≤
cPi, together with the convergence of the sequences (Pm) and (Pm

E ) in Lq([0, T ]), implies
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that the sequence of functions (
W ∗

i (Π̃i(P
m, Pm

E )
)
m≥1

is uniformly integrable. Consequently, the entire expression in (29) is also uniformly inte-
grable.

Applying Vitali’s convergence theorem, we deduce that

(30) |L(P, PE ,m
n,µn)− L(Pm, Pm

E ,mn,µn)| → 0, as m → ∞,

uniformly over n ≥ 1.
Following the same reasoning, we obtain

(31) L(Pm, Pm
E ,m,µ) → L(P, PE ,m,µ), as m → ∞.

Regarding the term in (28), using the definition of convergence in the topology τp and
the continuity of the sequences (Pm

E )m≥1 and (Pm)m≥1, we obtain:

lim
n→∞

L(Pm, Pm
E ,mn,µn) =

N∑
i=1

∫ T

0

∫
Oi

e−rt
{
W ∗

i

(
Π̃i(P

m(t), Pm
E (t))− x

)
− κi

}
mi

t(dx)dt

−
N∑
i=1

∫ T

0

∫
Oi

Kie
−(r+γi)t µi(dt, dx)−

∫ T

0
e−rt∆i(t, P

m
i (t)) dt

= L(Pm, Pm
E ,m,µ).

Combining this result with the convergence established in Equations (30)–(31) and substi-
tuting back into Equation (27), we conclude:

lim
n→∞

L(P, PE ,m
n,µn) = L(P, PE ,m,µ), for any P ∈ Pq.

Thus, we have established that the Lagrangian L is continuous with respect to (m,µ) ∈
R(m0) and, in particular, it is lower semi-continuous.

Step 3: Existence of a saddle point of L on Pq ×R(m0).
It is straightforward to verify that R(m0) is convex within VN

p ×MN
p . Furthermore, by

Lemma 4.7, R(m0) is the product of weakly compact subsets of VN
p ×MN

p . As a result,

R(m0) is weakly compact in VN
p ×MN

p under the topology τNp ⊗ τNp .
By applying Proposition VI.2.3 of Ekeland and Témam (1999), we deduce:

(32) max
m,µ∈R(m0)

inf
P∈Pq

L(P,m,µ) = inf
P∈Pq

max
m,µ∈R(m0)

L(P,m,µ)

To complete the proof of the existence of the saddle point, by Proposition VI.1.2 of
Ekeland and Témam (1999), it suffices to show that the infimum on the right-hand side is
attained.

To this end, we establish that the maximized Lagrangian is coercive in the Lq([0, T ])-
norm:

(33) max
m,µ

L(P,m,µ) → ∞, as ∥P∥Lq → +∞.
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Assume first that condition (1) of the theorem holds. By Assumption 3.7, we can fix a

pair (Q,E) ∈ RN(N+1)
≥0 and a price vector P ∈ RN

>0 such that

P iFi(qi, Ei, 1)−
N∑
j=1

P jqij > 0, for all i = 1, . . . , N.

Next, define a function k : [0, T ] → {1, . . . , N} such that

(34)
Pk(t)(t)

P k(t)

≥ Pi(t)

P i

, for all t ∈ [0, T ] and i = 1, . . . , N.

Using the definition of the maximum and the explicit formula for the maximized instan-
taneous profit functions, we obtain:

max
m,µ

L(P,m,µ) ≥
∫ T

0

∫
Ok(t)

e−rt
{
W ∗

k(t)

(
Π̃k(t)(P(t))− x

)
− κk(t)

}
m

k(t)
0 (dx)dt

−
N∑
i=1

∫ T

0
e−rt∆i(t, Pi(t)) dt,

(35)

where, for simplicity of notation, we suppress the dependence of Π̃k(t) on PE(t).
The optimized profit function satisfies

Π̃k(t)(P(t)) ≥ Pk(t)(t)Fk(t)(qk(t), Ek(t), 1)−
N∑
j=1

Pj(t)qj − PE(t)Ek(t)

≥
Pk(t)(t)

P k(t)

P k(t)Fk(t)(qk(t), Ek(t), 1)−
N∑
j=1

P jq
j

− PE(t)Ek(t),

for all t ∈ [0, T ].
Moreover, in view of (34), there exists a constant c > 0 such that

Pk(t)(t) ≥ c∥P(t)∥q, for all t ∈ [0, T ].

It follows that

Π̃k(t)(P(t)) ≥ c′∥P(t)∥q − PE(t)Ek(t), for all t ∈ [0, T ]

for some constant c′ > 0.
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This, together with condition (1) of the theorem, leads to the following bound for the
first term on the right-hand side of (35), for sufficiently large ∥P∥Lq :∫ T

0

∫
Ok(t)

e−rt
{
W ∗

k(t)

(
Π̃k(t)(P(t))− x

)
− κk(t)

}
m

k(t)
0 (dx)dt

≥ C +

∫ T

0

∫
Ok(t)

e−rtW ∗
k(t)

(
c′∥P(t)∥q − PE(t)Ek(t) − x

)
m

k(t)
0 (dx)dt

≥ C + ε

∫ T

0

∫
Ok(t)

e−rt
(
c′∥P(t)∥q − PE(t)Ek(t) − x

)q
+
m

k(t)
0 (dx)dt

≥ C + ε∥P∥qLq

where the constant C and the strictly positive constant ε may change from line to line. To
derive the last inequality, we use the fact that, without loss of generality, we may assume∫

Oj

mj
0(dx) > K, for all j = 1, . . . , N,

for some constant K > 0.
For the second term on the right-hand side of (35), by Assumption 4.8, we know that

for every ε′ > 0, there exists a constant C ′ > 0 such that:∫ T

0
e−rt∆i(t, P

i
t ) dt ≤ ε′∥P i∥L1 + C ′, for all i = 1, . . . , N.

Applying this bound and using Hölder’s inequality, we obtain:

(36) −
N∑
i=1

∫ T

0
e−rt∆i(t, Pi(t)) dt ≥ −ε′∥P∥Lq − C ′N.

Combining this with the previous estimate, we conclude that there exist constants C ′′, as
well as c′′, ε′′ > 0, such that:

max
m,µ

L(P,m,µ) ≥ C ′′ + ε′′∥P∥qLq , for ∥P∥Lq ≥ c′′.

This confirms that the coercivity condition (33) is satisfied under Assumption (1) of the
theorem.

Assume now that condition (2) of the theorem holds. By Assumption 4.12, for every
ε > 0, there exist constants C ∈ R and c > 0 such that

∆i(t, P ) ≤ C − εP q for all t ∈ [0, T ] and P ≥ c.

Consequently, for any ε′ > 0, there exist constants C ′ ∈ R and c′ > 0 such that

N∑
i=1

∫ T

0
e−rt∆i(t, Pi(t)) dt < C ′ − ε′∥P∥qLq , whenever ∥P∥Lq ≥ c′.



PROPAGATION OF CARBON PRICE SHOCKS THROUGH THE VALUE CHAIN 29

Using this, we obtain the estimate:

max
m,µ

L(P,m,µ) ≥
N∑
i=1

∫ T

0

∫
Oi

e−rt
{
W ∗

i

(
Π̃i(P(t))− x

)
− κi

}
mi

0(dx)dt

+ ε′∥P∥qLq − C ′.

(37)

By condition (2) of the theorem, we have that W ∗
i (y) = O(yq) for all i = 1, . . . , N .

Combining this with the upper bound Π̃i(P) ≤ cPi, we obtain that for sufficiently large
∥P(t)∥q,∫

Oi

W ∗
i

(
Π̃i(P(t))− x

)
mi

0(dx) ≤ ε′′
∫
Oi

(
Π̃i(P(t))− x

)q
+
mi

0(dx)

≤ ε′′
∫
Oi

1
x≤Π̃i(P(t))

(
Π̃i(P(t))q + xq

)
mi

0(dx)

≤ ε′′Pi(t)
q,

for some constant ε′′ > 0, which may vary from line to line.
By integrating both sides with respect to t ∈ [0, T ] and summing over i = 1, . . . , N , we

obtain that there exists a constant c′′ > 0 such that:

N∑
i=1

∫ T

0

∫
Oi

W ∗
i

(
Π̃i(P(t))− x

)
mi

0(dx)dt ≤ ε′′∥P∥qLq , for ∥P∥Lq ≥ c′′.

This immediately implies that:

N∑
i=1

∫ T

0

∫
Oi

W ∗
i

(
Π̃i(P(t))− x

)
mi

0(dx)dt = O(∥P∥qLq).

Substituting this into (37) establishes the coercivity condition (33).
Finally, from the coercivity of the maximized Lagrangian in the Lq([0, T ])-norm, it fol-

lows that if there exists a price vector function P∗ such that the infimum on the right-hand
side of Equation (32) is attained, then P∗ ∈ K, where K is a closed, bounded, and convex
subset of Pq defined by

K = {P ∈ Pq : ∥P∥Lq ≤ K} ,
for some constant K > 0. Since Lq([0, T ],RN ) is a reflexive Banach space for 1 < q < ∞,
it follows from Kakutani’s theorem (see (Conway, 1985, Theorem V.4.2)) that K is weakly
compact, ensuring that the infimum in (32) is attained.

This completes the proof of the existence of a saddle point (P∗,m∗,µ∗) ∈ Pq ×R(m0).
Step 4: Almost sure positivity and uniqueness of P∗.
To apply Lemma 4.11, it remains to verify that P∗ ∈ P+

q .
By definition of a saddle point, P∗ minimizes the Lagrangian L(P,m∗,µ∗). Suppose,

for contradiction, that there exists a measurable set B ⊆ [0, T ] with Leb(B) > 0 and some
i ∈ {1, . . . , N} such that P ∗

i (t) = 0 for all t ∈ B.
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Consider the perturbed price function Ph ∈ Pq for some h ∈ (0, 1), defined as:

P h
j (t) = P ∗

j (t), ∀j ̸= i, ∀t ∈ [0, T ],

and

P h
i (t) =

{
P ∗
i (t), t ∈ [0, T ] \B,

h, t ∈ B.

By the mean value theorem, there exists a function vh ∈ Pq such that

vhj (t) = P ∗
j (t), ∀j ̸= i, ∀t ∈ [0, T ],

vhi (t) = P ∗
i (t), ∀t ∈ [0, T ] \B,

vhi (t) ∈ (0, h), ∀t ∈ B,

and satisfying

(38) L(Ph,m∗,µ∗)− L(P∗,m∗,µ∗) = h

∫
B

δ

δPi
L(vh,m∗,µ∗)(t) dt,

where δ
δPi

denotes the Gâteaux derivative of L with respect to Pi. In particular,

δ

δPi
L(vh,m∗,µ∗)(t) =

N∑
j=1

∂

∂Pi

∫
Oj

e−rtΠj(v
h(t), x)mj,∗

t (dx)− e−rtDi(t, v
h
i (t)).

For notational simplicity, we suppress the dependence on the carbon price.
Following the same argument as in the proof of Lemma 4.11, we can exchange differen-

tiation and integration over mj,∗
t , yielding∫

B

δ

δPi
L(vh,m∗,µ∗)(t) dt =

N∑
j=1

∫
B

∫
Oj

e−rt ∂

∂Pi
Πj(v

h(t), x)mj,∗
t (dx) dt

−
∫
B
e−rtDi(t, v

h
i (t)) dt.

(39)

For the first term, we use the explicit formulas for the maximized instantaneous profit
and the optimal labor choice from Proposition 4.3, which give

(40)
∂

∂Pi
Πj(v

h(t), x) = (W ∗
j )

′
(
Π̃j(v

h(t))− x
)
∂PiΠ̃j(v

h(t)).

By Danskin’s theorem, the partial derivative of Π̃j with respect to Pi is

∂

∂Pi
Π̃j(v

h(t)) = 1i=j

{
Fj

(
q̃∗
j (v

h(t)), Ẽ∗
j (v

h(t)), 1
)
− q∗ji(v

h(t))
}
≤ c1j=i,

where the inequality follows from Assumption 2.1. Substituting this into (40), and using

both the upper bound Π̃i(P) ≤ cPi and the convexity of W ∗
i , we obtain

∂

∂Pi
Πj(v

h(t), x) ≤ c1j=i (W
∗
j )

′
(
cvhj (t)− x

)
.
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Integrating both sides and summing over j = 1, . . . , N , we get

N∑
j=1

∫
B

∫
Oj

e−rt ∂

∂Pi
Πj(v

h(t), x)mj,∗
t (dx)dt ≤ c

∫
B

∫
Oi

e−rt(W ∗
i )

′
(
cvhi (t)− x

)
mi,∗

t (dx)dt.

Since vhi (t) → 0 as h → 0 for all t ∈ B, and given that (W ∗
i )

′ has the same support as
W ∗

i , meaning it vanishes on the negative real line, it follows that

lim
h→0

(W ∗
i )

′
(
cvhi (t)− x

)
= 0, for all (t, x) ∈ B ×Oi.

Furthermore, since (W ∗
i )

′ is increasing, we have the upper bound

(W ∗
i )

′
(
cvhi (t)− x

)
≤ (W ∗

i )
′
(
cvhi (t)

)
≤ (W ∗

i )
′ (c) ,

where we used vhi (t) ≤ 1 for all t ∈ B and uniformly over h ∈ (0, 1).
Applying the dominated convergence theorem, we conclude that

N∑
j=1

∫
B

∫
Oj

e−rt ∂

∂Pi
Πj(v

h(t), x)mj,∗
t (dx)dt = o(1).

Plugging this bound into Equation (39), we obtain∫
B

δ

δPi(t)
L(vh,m∗,µ∗) dt = o(1)−

∫
B
e−rtDi(t, v

h
i (t)) dt.

By Assumption 4.8,

lim
h→0

Di(t, v
h
i (t)) = ∞, uniformly for t ∈ B.

Thus, by uniform convergence, for sufficiently small h, we have∫
B

δ

δPi(t)
L(vh,m∗,µ∗) dt < 0.

This, combined with Equation (38), implies

L(Ph,m∗,µ∗) < L(P∗,m∗,µ∗),

contradicting the assumption that P∗ minimizes L. We thus conclude that P∗ ∈ P+
q , as

required.
This concludes the proof of the existence of a linear programming MFG Nash equilibrium.

The uniqueness of the corresponding price system (up to a set of measure zero) follows
directly from the strict convexity of L(P,m,µ) with respect to P. □

Remark 4.14 (Connection to Mean-Field Type Control Problems). As in the static model
(see Remark 3.10), the equilibrium resulting from decentralized, non-cooperative decision-
making in a mean-field game (right-hand side of (26)) coincides with the allocation that a
social planner would implement to maximize the aggregate surplus of the economy (left-
hand side of (26)).
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Because of the mean-field structure of the model, the social planner formulation cor-
responds to a mean-field type control (MFC) problem, in which the planner optimally
controls the distribution of agents to maximize a welfare functional and achieve Pareto
efficient outcomes (see (Bensoussan et al., 2013, Ch. 4)).

5. Numerical illustration

In this section, we present numerical simulations based on CES production functions,
CIR dynamics for labor cost processes, and power-type functional forms for demand and
labor cost. We consider two stylized models.

We first analyze a single-sector economy consisting solely of a brown sector, which em-
ploys labor and emissions as inputs with equal CES share parameters. This setting allows
us to study the effects of a carbon price on (i) capacity evolution, (ii) substitution dynam-
ics — specifically, how emissions are replaced by labor in output production — and (iii)
carbon cost pass-through, i.e., the extent to which the carbon price is reflected in final
prices passed on to consumers (see Neuhoff and Ritz (2019)).

We then turn to a multi-sector economy composed of three sectors: Brown, Green, and
Manufacturing. In this case, the CES input share parameters are set to reflect an input-
output structure where Manufacturing requires both Brown and Green goods as inputs,
and both Brown and Green sectors consume a fraction of Manufacturing output in their
production processes. This setup enables us to study the propagation of carbon pricing
through the value chain.

To isolate the effects of substitution and propagation, we fix the parameters of the CIR
labor cost process uniformly across all sectors (see Remark 4.2), setting α = 0.1, θ = 22.5,
and σ = 8.

We further assume zero liquidation cost at default, allowing us to focus on sector capac-
ities, as well as the densities of the killed labor cost processes.

The linear MFG Nash equilibrium is computed using the fictitious play algorithm pro-
posed by Aı̈d et al. (2021) and Dumitrescu et al. (2023), combined with explicit expressions
for optimal input choices derived in Propositions 4.3 and 2.8. For each best response in
Problem (23), we discretize the Fokker-Planck inequality using an implicit scheme, and
evaluate the optimization functional over discretized measures. The resulting optimization
problem is solved using the Gurobi library (www.gurobi.com).

5.1. Example 1: Impact of carbon pricing on a single brown sector. In the single-
sector model, we consider a brown sector that requires 0.5 units of labor and 0.5 units
of emissions to produce one unit of output, with a CES substitution parameter ρ = 0.5,
corresponding to a moderately high elasticity of substitution. The carbon price increases
deterministically from $1 to $30 over the period 2025–2030.

Figure 1 (left panel) displays the evolution of the sector’s total capacity under two
scenarios: with and without carbon pricing. The right panel shows the corresponding
evolution of the density of labor costs among active firms. The introduction of a carbon
price clearly reduces capacity, which declines significantly faster than in the no-tax scenario.
However, due to the deterministic nature of the policy, firms are able to anticipate the

www.gurobi.com
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Figure 1. Left: Sector capacity with and without carbon price. Right:
Labor cost density under carbon pricing.

shock and gradually exit the market according to their individual labor costs, rather than
triggering a sudden wave of defaults. The associated density plot confirms that higher-cost
firms exit first, leading to a progressive concentration of the active population around lower
labor cost levels.

The smoothness of this exit dynamic is enabled by the elasticity of substitution, which
allows firms to partially adjust their input mix in response to rising emission costs, thereby
spreading market exits over time. Figure 2 further illustrates the adjustment mechanisms
triggered by the carbon tax. The left panel shows the substitution between emissions and
labor: as the carbon price rises, firms decarbonize by reducing their emission intensity
and shifting toward labor. Since the elasticity of substitution is sufficiently high, near-
complete decarbonization is achieved with a moderate final carbon tax level, while avoiding
widespread distress in the sector.

The right panel shows the pass-through effect of carbon costs. The tax is partially
transmitted to output prices, which rise more than the emission cost per unit of output,
but remain well below the theoretical price level that would prevail in the absence of
substitution. In this sense, consumers bear part of the burden of carbon pricing, but the
substitution channel substantially mitigates the total price impact.

5.2. Example 2: Substitution in a multi-sector economy. In the three-sector econ-
omy, we consider the following input-output structure:

• The Brown sector uses 0.5 units of emissions, 0.4 units of labor, and 0.1 units of
Manufacturing output, with a high substitution parameter ρB = 1.5, reflecting
rigid fossil-based technologies.

• The Green sector uses 0.01 units of emissions, 0.89 units of labor, and 0.1 units of
Manufacturing output, with a moderately high substitution parameter ρG = 0.7.
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Figure 2. Left: Substitution between emissions and labor. Right: Carbon
cost pass-through.

• The Manufacturing sector uses 0.35 units of Brown output, 0.35 units of Green
output, 0.05 units of emissions, and 0.25 units of labor, with a low substitution
parameter ρM = 0.1, allowing substantial input flexibility.

We also examine the impact of carbon pricing on final demand across sectors. Each
sector faces a power demand function as in Example 3.2, with no exogenous supply. We
set aB = 100 and ϵB = 2 for the Brown sector, modeling high initial demand for fossil-
based technologies and strong sensitivity to price increases. This structure captures the
idea that Brown goods are initially dominant but highly exposed to carbon pricing.

For the Green and Manufacturing sectors, we set ϵG = ϵM = 0.5 to reflect inelastic
demand: for Green, due to transition policies such as subsidies, and for Manufacturing,
due to its central role in the value chain. The scale parameters are set to aG = 1 for Green,
reflecting a small initial demand, and aM = 10 for Manufacturing, indicating intermediate
baseline demand.

We test the model under a more stringent regulatory scenario, with the carbon price
rising from $1 to $200 over a ten-year window, from 2025 to 2035.

Figure 3 shows the evolution of carbon emissions and labor across the three sectors.
Emissions drop sharply in all sectors following the carbon price shock, approaching zero in
the Green and Manufacturing sectors. In contrast, emissions in the Brown sector remain
strictly positive, reflecting its low elasticity of substitution, which limits the ability to
fully decarbonize. Labor in the Brown sector also declines, though less than emissions,
indicating that, even under technological rigidity, a substitution effect remains observable,
with firms replacing costly emissions with labor to the extent permitted by the production
function.

In contrast, both the Green and Manufacturing sectors experience a reallocation of
employment rather than a contraction. Their higher substitution elasticities enable them
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Figure 3. Emissions (left) and labor (right) in the three sectors.
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Figure 4. Production (left) and final demand (right) in the three sectors.

to offset reduced emissions by increasing labor input, thus sustaining production under
the carbon constraint. This highlights how decarbonization can shift labor across sectors
rather than destroy it, depending on the flexibility of production technologies.

Figure 4 displays the evolution of sectoral production (left panel) and final demand
(right panel). All sectors experience a decline in output, though to varying degrees. The
Brown sector sees a substantial drop, as it reduces both emissions and labor with limited
substitution flexibility. The Green sector experiences only a mild contraction: it success-
fully replaces emissions with labor, though its dependence on Manufacturing inputs limits
a full offset. Manufacturing output declines to a level between that of the Green and Brown
sectors, as it partially compensates for the reduction in Brown inputs by increasing reliance
on Green goods and labor.

A similar pattern appears in final demand: the Brown sector experiences a near-complete
collapse as its highly elastic consumers curtail purchases, whereas demand for Green goods
remains almost unchanged and ultimately exceeds that of the Brown sector.
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Figure 5. Prices (left) and capacity (right) in the three sectors.
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Figure 6. Labor cost densities in the three sectors.

Finally, Figure 5 displays sectoral prices (left panel) and capacity dynamics (right panel),
while Figure 6 shows the evolution of labor cost densities. All sectors respond to the carbon
price shock by raising their prices, with the Brown sector exhibiting the largest increase.

As in the single-sector model, we observe an anticipation effect in the capacity dynamics
of the Brown sector. However, due to its low elasticity of substitution, firms with higher
labor costs are forced to exit the market even before the carbon price begins to rise, leading
to a sharp initial drop in capacity. This wave of early exits triggers a spillover effect that
partially affects the Green sector, which, despite emitting at a much lower rate, remains
indirectly exposed through its reliance on Manufacturing inputs. The Manufacturing sec-
tor’s capacity remains nearly constant throughout, as it emits very little and increasingly
substitutes toward Green input and labor after the shock. Its high elasticity of substitution
acts as an effective buffer against the rise in carbon costs.

Notably, when comparing the Brown sector across the single-sector and three-sector
models, we observe that long-term capacity stabilizes at a similar level, despite the Brown
sector facing a sixfold higher carbon tax and a lower elasticity of substitution in the three-
sector setting.

This outcome is explained by differences in the structure of demand. In the single-sector
model, Brown firms sell exclusively to final consumers, whose demand is highly elastic. As
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carbon pricing raises output prices, final demand collapses, leading to substantial revenue
losses and widespread firm exit. In contrast, in the three-sector economy, Brown firms are
partially sustained by intermediate demand from the Manufacturing sector, even as final
demand vanishes. The inter-sector linkage thus not only propagates the carbon cost shock,
but also mitigates firm exit by maintaining an additional source of demand.

6. Conclusions

In this paper, we introduced a novel multi-sector equilibrium model based on mean-field
game theory to analyze the propagation of carbon price shocks through the productive
economy and along the value chain. The framework accommodates a broad class of realistic
production technologies with substitutability between inputs, which plays a key role in
mitigating carbon price shocks and shaping decarbonization pathways. Our theoretical
analysis not only ensures the existence and uniqueness of equilibria, but also provides a
transparent economic interpretation consistent with welfare economics and the centralized
social planner problem.

While the model effectively captures agent heterogeneity via idiosyncratic shocks in local
input costs (such as labor), it does not account for aggregate sources of uncertainty. A
natural extension would be to introduce a common noise component into the mean-field
interactions. Other possible generalizations include incorporating stochastic carbon price
dynamics and carbon taxation under partial information, for instance when firms respond
to uncertain policy trajectories or technological transitions.

From a numerical standpoint, the model could be applied to real-world data, leveraging
input–output tables to calibrate production structures and market price data to estimate
demand systems. Such extensions would broaden the model’s empirical relevance and
support its application to policy analysis in the context of industrial decarbonization.
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Appendix A. Proofs of results from Section 2

A.1. Proof of Proposition 2.6. Since Fi is concave and upper semi-continuous, and Wi

is convex and lower semi-continuous, the profit function Πi is concave and upper semi-
continuous. Additionally, if Fi is strictly concave and Wi is strictly convex, then Πi is
strictly concave. In this case, any maximizer, if it exists, is unique.

To establish the existence of an optimal solution, we verify that the profit function
satisfies the following coercivity condition:

(41) Πi(P, PE ,xi) → −∞, as ∥xi∥ → ∞,

for any price vector P ∈ RN
>0 and any carbon price PE ∈ R>0.

Consider first the case where the production function Fi satisfies Assumption 2.1 (a).
Then, for any ε > 0, there exist a constant C > 0 such that:

Fi(xi) ≤ ε∥xi∥, for all xi with ∥xi∥ ≥ C.

Since Wi is strictly increasing and convex, we have:

lim inf
L→∞

Wi(L)

L
> 0.

Therefore, there exists a constant ε′ > 0 (which may depend on both P and PE) and a
constant C ′ > 0 such that:

C(P, PE ,xi) =
N∑
j=1

Pjqij + PEEi +Wi(Li) ≥ ε′∥xi∥, whenever ∥xi∥ ≥ C ′.

Combining these bounds, the profit function satisfies:

Πi(P, PE ,xi) ≤ (εPi − ε′)∥xi∥, for all xi such that ∥xi∥ ≥ max{C,C ′}.

Since ε is arbitrary and Pi > 0, choosing ε ≤ ε′

Pi
ensures that the right-hand side diverges

to −∞ as ∥xi∥ → ∞, for any P ∈ RN
>0 and any PE ∈ R>0.

Now, consider the case where the production function Fi satisfies Assumption 2.1 (b).
This allows us to bound the profit function as:

Πi(P, PE ,xi) ≤ cPiLi −
N∑
j=1

Pjqij − PEEi −Wi(Li).

By Assumption 2.4, the right-hand side tends to −∞ as ∥xi∥ → ∞, for any P ∈ RN
>0 and

PE ∈ R>0.
Since the coercivity condition (41) holds in both cases, the maximization in Problem (5)

can be restricted to a compact subset of RN+2
≥0 , and the existence of a maximizer then

follows from the extreme value theorem for upper semi-continuous functions.
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A.2. Proof of Proposition 2.7. Exploiting the homogeneity property of the production
function, the maximized profit can be rewritten as:

Πi(P, PE) = max
Li

{
Limax

qi,Ei

[
PiFi

(qi

Li
,
Ei

Li
, 1
)
−

N∑
j=1

Pj
qij
Li

− PE
Ei

Li

]
−Wi(Li)

}

= max
Li

{
Limax

q̃i,Ẽi

[
PiFi(q̃i, Ẽi, 1)−

N∑
j=1

Pj q̃ij − PEẼi

]
−Wi(Li)

}

= W ∗
i

(
max
q̃i,Ẽi

[
PiFi(q̃i, Ẽi, 1)−

N∑
j=1

Pj q̃ij − PEẼi

])
= W ∗

i

(
Π̃i(P, PE)

)
,

where W ∗
i is the convex conjugate of Wi introduced in (6), and Π̃i(P, PE) is defined as

in (7). In the second line, we introduced the normalized variables

q̃ij :=
qij
Li

, Ẽi :=
Ei

Li
.

Assuming Wi is strictly convex and differentiable, the first-order condition for the opti-
mal labor input L∗

i yields

W ′
i (L

∗
i ) = Π̃i(P, PE).

Since Wi is strictly convex, its derivative W ′
i is strictly increasing and hence invertible.

Solving for L∗
i gives

L∗
i = (W ′

i )
−1
(
Π̃i(P, PE)

)
.

Finally, given the solution q̃∗
i , Ẽ

∗
i to problem (7), the optimal input quantities and emis-

sions are recovered via the normalized variables:

q∗ij = q̃∗ijL
∗
i , j = 1, . . . , N, E∗

i = Ẽ∗
i L

∗
i .

This concludes the proof.

A.3. Proof of Proposition 2.8. Let Fi denote the CES production function with con-
stant returns to scale and positive substitution parameter ρi > 0, given by:

Fi(qi, Ei, Li) = Ai

 N∑
j=1

αijq
−ρi
ij + αiEE

−ρi
i + αiLL

−ρi
i

− 1
ρi

.

Differentiating the normalized profit with respect to the normalized inputs and emissions
yields the first-order conditions:

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αij q̃
−ρi−1
ij − Pj = 0, j = 1, . . . , N,

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αiEẼ
−ρi−1
i − PE = 0.
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The left-hand side of each equation is a decreasing function of the corresponding input
(i.e., q̃ij or Ẽi), holding all other parameters fixed. Moreover, for ρi > 0, the following
asymptotic limits hold:

lim
q̃ij→0

A−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αij q̃
−ρi−1
ij = α

−1/ρi
ij Ai,

lim
q̃ij→∞

A−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αij q̃
−ρi−1
ij = 0,

lim
Ẽi→0

A−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αiEẼ
−ρi−1
i = α

−1/ρi
iE Ai,

lim
Ẽi→∞

A−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αiEẼ
−ρi−1
i = 0.

It follows that the optimality conditions are:

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αij q̃
−ρi−1
ij = Pj if

Pj

Pi
≤ α

−1/ρi
ij Ai, and q̃ij = 0 otherwise,

for j = 1, . . . , N , and

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αiEẼ
−ρi−1
i = PE if

PE

Pi
≤ α

−1/ρi
iE Ai, and Ẽi = 0 otherwise.

It is easy to verify that

lim
q̃ij→0+

Fi(q̃i, Ẽi, 1) = 0 for some j = 1, . . . , N,

lim
Ẽi→0+

Fi(q̃i, Ẽi, 1) = 0,

so that if q̃ij = 0 for any j, or Ẽi = 0, then the total output is zero. In such a scenario, all

inputs vanish: q̃ij = 0 for all j, and Ẽi = 0.
The optimality conditions can therefore be summarized as:

if
Pj

Pi
≤ α

−1/ρi
ij Ai for all j = 1, . . . , N, and

PE

Pi
≤ α

−1/ρi
iE Ai,

then:

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αij q̃
−ρi−1
ij = Pj , for all j = 1, . . . , N,

and:

PiA
−ρi
i Fi(q̃i, Ẽi, 1)

ρi+1αiEẼ
−ρi−1
i = PE .

Otherwise, we have q̃ij = 0 for all j, and Ẽi = 0.
To obtain the explicit expressions, suppose the above condition is satisfied, and denote

by Q̃∗
i := Fi(q̃

∗
i , Ẽ

∗
i , 1) the optimal production normalized by labor. Then the optimal

inputs are:

q̃∗ij = Q̃∗
i

(
PjA

ρi
i

Piαij

)− 1
ρi+1

, Ẽ∗
i = Q̃∗

i

(
PEA

ρi
i

PiαiE

)− 1
ρi+1

.(42)
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Substituting these into Fi(q̃
∗
i , Ẽ

∗
i , 1), we obtain the optimal normalized output:

Q̃∗
i = Aiα

− 1
ρi

iL

1−
N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

−

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1


1
ρi

.(43)

This expression is valid whenever the term inside the parentheses is non-negative; otherwise,
the optimal production is zero.

Thus, the optimal production and inputs are given by (43) and (42), respectively, if and
only if

N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

+

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1

≤ 1;

otherwise, both production and input levels are zero.

Under the condition of strictly positive production, the normalized profit function Π̃i is
given by:

Π̃i(P, PE) = Q̃∗
i

Pi −
N∑
j=1

Pj

(
PjA

ρi
i

Piαij

)− 1
ρi+1

− PE

(
PEA

ρi
i

PiαiE

)− 1
ρi+1



= PiAiα
−1/ρi
iL

1−
N∑
j=1

(
Pjα

1/ρi
ij

AiPi

) ρi
ρi+1

−

(
PEα

1/ρi
iE

AiPi

) ρi
ρi+1


ρi+1

ρi

.

This concludes the proof.

Appendix B. Proof of Lemma 3.6

Let (P∗,Q∗,E∗,L∗) ∈ RN
>0 × RN(N+2)

≥0 be a saddle point of the Lagrangian defined by

(11). From the left inequality in Definition 3.5, it follows that, for each i = 1, . . . , N , the
tuple (q∗

i , E
∗
i , L

∗
i ) solves the profit maximization problem (5).

Next, from the right inequality in Definition 3.5, we have, for all P ∈ RN
≥0,

L(P∗,Q∗,E∗,L∗) ≤ L(P,Q∗,E∗,L∗).

Since, by Assumption 3.1, the Lagrangian is differentiable with respect to P on RN
>0, it

follows that:

∂L
∂Pi

(P∗,Q∗,E∗,L∗) = Fi(q
∗
i , E

∗
i , L

∗
i )−

N∑
j=1

q∗ji −Di(P
∗
i ) = 0, i = 1, . . . , N,

which corresponds to the clearing condition (8).

Conversely, assume (P∗,Q∗,E∗,L∗) ∈ RN
>0×RN(N+2)

≥0 is a CE. By condition (ii) of Defi-
nition 3.3, the left inequality in Definition 3.5 is satisfied. The right inequality follows from
the differentiability and convexity of the Lagrangian with respect to P ∈ RN

>0, combined
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with the fact that its derivative at the saddle point is zero due to the market clearing
condition.

Appendix C. Proofs of technical lemmas from Section 4

C.1. Proof of Lemma 4.7. Since Vp(Oi) ×Mp([0, T ] × Oi), endowed with the product
topology τp⊗ τp, is metrizable, it suffices to show that Ri(m0) is sequentially compact. To
this end, consider a sequence (mn, µn)n≥1 ⊂ Ri(m0). Define the test function

uk(t, x) := (T + 1− t)ϕk(x), k ≥ 1,

where

ϕk(x) :=
(
1 + xqf

(x
k

))
1x≤k +

(
1 + k3f(1)

)
1x>k, q ≤ p′,

and the function f is given by

f(z) :=
q2 + q

q2 + 3q + 2
z2 − 2q2 + 4q

q2 + 3q + 2
z + 1.

It is straightforward to verify that f is smooth and positive on [0, 1], with f(0) = 1, ensuring
that ϕk ∈ C2

b (Oi) and is strictly positive. In particular, the first and second derivatives of
ϕk are given by:

ϕ′
k(x) = Cq

(
1− x

k

)2
xq−11x≤k,

ϕ′′
k(x) = Cq

[
−2

k

(
1− x

k

)
xq−1 + (q − 1)

(
1− x

k

)2
xq−2

]
1x≤k,

where

Cq =
q(q + 1)(q + 2)

q2 + 3q + 2
.

Substituting this test function into Equation (22), and noting that the left-hand side is
non-negative, we obtain∫

Oi

uk(0, x)m0(dx) +

∫ T

0

∫
Oi

(
∂uk
∂t

+ Liuk

)
(t, x)mn

t (dx)dt ≥ 0.

This implies the estimate:∫ T

0

∫
Oi

ϕk(x)m
n
t (dx)dt ≤ (T + 1)

∫
Oi

ϕk(x)m0(dx)

+

∫ T

0

∫
Oi

(T + 1− t)

[
αi(t, x)ϕ

′
k(x) +

σ2
i (t, x)

2
ϕ′′
k(x)

]
mn

t (dx)dt.

Taking q = 0 so that ϕk ≡ 1 yields the bound:∫ T

0

∫
Oi

mn
t (dx)dt ≤ (T + 1)

∫
Oi

m0(dx).
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Next, under Assumption 4.1, and using the explicit expressions for ϕ′
k and ϕ′′

k, we can
bound the generator term as:∣∣αi(t, x)ϕ

′
k(x)

∣∣+ 1

2
σ2
i (t, x)

∣∣ϕ′′
k(x)

∣∣ ≤ Cq

(
xq−1 +

1 + kβ

k
xq−1 + (q − 1)

1 + kβ

k
xq−2

)
1x≤k.

Substituting this bound into the inequality above, and recalling that β ∈ [0, 1], we obtain:∫ T

0

∫
Oi

ϕk(x)m
n
t (dx)dt ≤ (T + 1)

∫
Oi

ϕk(x)m0(dx)

+ C

∫ T

0

∫
Oi

(
xq−1 + (q − 1)xq−2

)
1x≤k m

n
t (dx)dt,

for some constant C > 0 independent of n.
Applying the monotone convergence theorem as k → ∞, we deduce:∫ T

0

∫
Oi

(1 + xq)mn
t (dx)dt ≤ (T + 1)

∫
Oi

(1 + xq)m0(dx)

+ C

∫ T

0

∫
Oi

(
xq−1 + (q − 1)xq−2

)
mn

t (dx)dt.

Applying this estimate iteratively for q = 1, . . . , ⌈p′⌉, we conclude that

sup
n≥1

∫ T

0

∫
Oi

(1 + xp
′
)mn

t (dx)dt < ∞,

which proves that the sequence (mn)n≥1 is relatively compact in the topology τp; see
(Dumitrescu et al., 2023, Corollary A.4).

A similar argument using the same test function uk yields the relative compactness of
the sequence (µn)n≥1.

Finally, the argument in (Dumitrescu et al., 2021, Theorem 2.13) shows that the weak
limit of a convergent subsequence (mn, µn) satisfies Equation (22). Since p ≥ 1 and the
generator Li has at most linear growth, we conclude that the limit pair (m,µ) belongs to
Ri(m0). This establishes the compactness of Ri(m0).

C.2. Proof of Lemma 4.11. Let (P∗,m∗,µ∗) ∈ P+
q × R(m0) be a saddle point of the

Lagrangian defined in (25). By the definition of a saddle point, we have

L(P∗,m,µ) ≤ L(P∗,m∗,µ∗) for all (m,µ) ∈ VN
p × VN

p .

This directly establishes Property (iii) of Definition 4.10. Moreover, Property (ii) follows
immediately from the assumptions of the lemma.

To establish Property (i), we recall that the Minimax equality (26) ensures

L(P∗,m∗,µ∗) ≤ L(P,m∗,µ∗) for all P ∈ Lq.
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As a consequence, we obtain that for t-almost every t ∈ [0, T ] and for all P ∈ Lq,

N∑
j=1

∫
Oj

Πj(P
∗(t), x)mj,∗

t (dx)−∆j(t, P
∗
j (t)) ≤

N∑
j=1

∫
Oj

Πj(P(t), x)mj,∗
t (dx)−∆j(t, Pj(t)).

For notational simplicity, we suppress the explicit dependence of Πj on PE(t).
Since ∆j(t, ·) is differentiable on R>0 for all t ∈ [0, T ], as ensured by Assumption 4.8,

the first-order optimality condition gives

(44)
∂

∂Pi

N∑
j=1

∫
Oj

Πj(P
∗(t), x)mj,∗

t (dx)−Di(t, P
∗
i (t)) = 0.

To justify the interchange of the derivative and the integral in the first term on the left-
hand side of (44), we express the partial derivative as a limit, and applying the linearity
of the integral, we obtain:

∂

∂Pi

∫
Oj

Πj(P
∗(t), x)mj,∗

t (dx) = lim
h→0

∫
Oj

Πj(P
∗(t) + hei, x)−Πj(P

∗(t), x)

h
mj,∗

t (dx),

(45)

where ei denotes the unit vector in RN corresponding to the i-th component.
Using the explicit expression for the maximized instantaneous profit from Proposition

4.3, we obtain:∣∣Πj(P
∗(t) + hei, x)−Πj(P

∗(t), x)
∣∣ = ∣∣∣W ∗

j

(
Π̃j(P

∗(t) + hei)− x
)
−W ∗

j

(
Π̃j(P

∗(t))− x
)∣∣∣

≤
∣∣∣W ∗

j

(
Π̃j(P

∗(t)) + hei
)
−W ∗

j

(
Π̃j(P

∗(t))
)∣∣∣ ,

where the inequality follows from the convexity of W ∗
j .

To establish an integrable bound for the expression inside the integral on the right-hand
side of Equation (45), it suffices to show that the limit

(46) lim
h→0

W ∗
j

(
Π̃j(P

∗(t)) + hei
)
−W ∗

j

(
Π̃j(P

∗(t))
)

h

exists and is finite.
By the strict concavity of Fi, there exists a unique pair (q̃∗

i , Ẽ
∗
i ) solving the optimization

problem (7) for each i = 1, . . . , N . Consequently, by Danskin’s theorem (see (Bertsekas,

1999, Proposition B.25)), the function Π̃j(P) is differentiable with respect to Pi.
Furthermore, since Wi is strictly convex and differentiable, its convex conjugate W ∗

i is
also differentiable in the interior of its domain (see (Rockafellar, 1970, Theorem 26.3)).
This ensures that the limit in (46) exists and is finite.

Next, applying Lebesgue’s dominated convergence theorem, we can interchange the inte-
gral and the limit on the right-hand side of Equation (45), thereby validating differentiation
under the integral sign.
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As a result, the first-order condition (44) can be rewritten as:

N∑
j=1

∫
Oj

∂

∂Pi
Πj(P

∗(t), x)mj,∗
t (dx)−Di(t, P

∗
i (t)) = 0.(47)

Applying Danskin’s theorem once again, we obtain an explicit expression for the deriv-
ative of Πj with respect to Pi:

∂

∂Pi
Πj(P

∗(t), x) = 1i=jFj(q
∗
j (P

∗(t), x), E∗
j (P

∗(t), x), L∗
j (P

∗(t), x))− q∗ji(P
∗(t), x),

where (q∗
j , E

∗
j , L

∗
j )(P

∗(t), x) denotes the optimal input allocation solving the instantaneous

profit maximization problem (20) at price level P∗(t), for a given (t, x) ∈ [0, T ]×Oj .
Substituting this expression into Equation (47) and summing over all terms, we recover

the market-clearing conditions. This confirms that P∗ satisfies Property (i) of Definition
4.10, thereby completing the proof.
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