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Abstract: The integration of artificial intelligence (AI) agents with the Internet of Things
(IoT) has marked a transformative shift in environmental monitoring and management,
enabling advanced data gathering, in-depth analysis, and more effective decision making.
This comprehensive literature review explores the integration of AI and IoT technologies
within environmental sciences, with a particular focus on applications related to water
quality and climate data. The methodology involves a systematic search and selection
of relevant studies, followed by thematic, meta-, and comparative analyses to synthesize
current research trends, benefits, challenges, and gaps. The review highlights how AI
enhances IoT’s data collection capabilities through advanced predictive modeling, real-time
analytics, and automated decision making, thereby improving the accuracy, timeliness, and
efficiency of environmental monitoring systems. Key benefits identified include enhanced
data precision, cost efficiency, scalability, and the facilitation of proactive environmental
management. Nevertheless, this integration encounters substantial obstacles, including
issues related to data quality, interoperability, security, technical constraints, and ethical
concerns. Future developments point toward enhancements in AI and IoT technologies, the
incorporation of innovations like blockchain and edge computing, the potential formation
of global environmental monitoring systems, and greater public involvement through
citizen science initiatives. Overcoming these challenges and embracing new technological
trends could enable AI and IoT to play a pivotal role in strengthening environmental
sustainability and resilience.

Keywords: artificial intelligence (AI) agents; Internet of Things (IoT); environmental
monitoring; water quality; climate data; predictive analytics; real-time decision making;
sustainable environmental management; AI–IoT integration; smart environmental systems

1. Introduction

1.1. Background

The modern world is confronted with numerous environmental issues [1–3], which
present serious risks to ecosystems [4,5], public health [6,7], and the global economy [8–10].
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Issues such as climate change [11–13], water pollution [14–16], deforestation [17–19], and
loss of biodiversity [20,21] are escalating at an unprecedented rate, driven by industri-
alization [22–24], urbanization [25–27], and unsustainable resource exploitation [28,29].
For instance, rising global temperatures [30–33] are altering weather patterns, leading to
extreme events like hurricanes, droughts, and floods, which in turn disrupt agricultural
productivity and compromise water security. Likewise, the pollution of water bodies [34,35]
due to agricultural runoff, industrial discharges, and untreated sewage not only harms
aquatic ecosystems but also presents significant health hazards to communities depending
on these water sources.

In addressing these complex and interrelated challenges, timely and accurate decision-
making in environmental sciences is paramount. Successful management and mitigation
efforts rely on real-time environmental monitoring, accurate trend prediction, and proactive
responses to emerging threats. Conventional monitoring methods, which typically involve
intermittent data collection and manual analysis, are becoming insufficient given the
accelerating pace of environmental changes and the vast amounts of data produced. As a
result, there is an urgent demand for innovative technological solutions that can improve
the accuracy, efficiency, and scalability of environmental data acquisition and analysis.

1.2. Role of Technology in Environmental Monitoring

The development of environmental monitoring tools [36–38] has significantly pro-
gressed in recent decades, fueled by technological advancements and the growing need
for comprehensive, real-time environmental data. Early environmental monitoring efforts
were largely manual and labor-intensive, involving field surveys, laboratory analyses, and
paper-based record-keeping [39,40]. Although these approaches offered important insights,
their effectiveness was constrained by limited scope, infrequent data collection, and the
risk of human error. The advent of digital technologies has revolutionized environmental
monitoring [41,42] by enabling automated data collection, storage, and analysis. The In-
ternet of Things (IoT) has become a key technology in this evolution, enabling the use of
interconnected sensors and devices for the continuous monitoring of diverse environmental
parameters [43–45]. IoT-based sensors can monitor various environmental parameters,
such as air and water quality, temperature, humidity, and soil moisture, while transmit-
ting real-time data to centralized platforms for analysis [46–48]. In conjunction with IoT,
Artificial Intelligence (AI) technologies have brought advanced capabilities for processing
and interpreting the large datasets produced by environmental sensors [49,50]. Machine
learning algorithms can detect patterns, forecast trends, and extract actionable insights
from complex environmental data, thereby improving the decision-making process [51–53].
AI-driven models can forecast pollution levels, predict climate anomalies, and optimize
resource management strategies, enabling environmental scientists and policymakers to
respond swiftly and effectively to emerging challenges. The combination of IoT and AI [54]
creates a synergistic framework that harnesses the advantages of both technologies. IoT es-
tablishes the foundation for continuous and extensive data collection, while AI delivers the
analytical capabilities needed to convert raw data into actionable insights. This integration
enables quicker and more precise decision making, ultimately enhancing environmental
management and sustainability efforts.

This article aims to examine the integration of artificial intelligence (AI) agents and the
Internet of Things (IoT) in environmental sciences, with a particular emphasis on improving
decision-making processes concerning water quality and climate data. By examining the
interplay between these technologies, this article aims to elucidate how their combined
application can address the pressing environmental challenges of our time. Specifically, the
article seeks to achieve the following objectives:
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1. Define and characterize AI agents within the context of environmental sciences,
highlighting their various types, functions, and capabilities.

2. Give a summary of IoT technologies applicable to environmental monitoring, high-
lighting the various sensors utilized for collecting water quality and climate data.

3. Examine the interaction between IoT and AI, explaining how their integration
enhances data accuracy, enables real-time monitoring, and supports proactive
decision making.

4. Examine case studies and practical applications where AI and IoT have been success-
fully implemented to monitor and manage environmental parameters.

5. Explore the advantages, obstacles, and future prospects of implementing integrated
AI–IoT systems in environmental sciences.

2. Methodology of Literature Review

A systematic literature review was carried out to examine the integration of AI and
IoT in environmental sciences, with a focus on water quality and climate monitoring. The
review highlights major research trends, effective applications, existing challenges, and
potential future developments.

A systematic search was performed across IEEE Xplore, SpringerLink, ScienceDirect,
Wiley Online Library, and PubMed, supplemented by industry reports (WHO, EPA, IEA)
and conference proceedings. Keywords included “AI agents”, “IoT”, “environmental
monitoring”, and “predictive analytics”, with Boolean operators to refine results.

Studies published between 2010 and 2024 were included if they addressed AI–IoT
integration in environmental sciences, prioritizing peer-reviewed research. Non-scholarly
sources, outdated publications, and theoretical-only studies without empirical validation
were excluded. Global research diversity was considered to ensure a broad perspective.

Titles and abstracts were screened based on selection criteria, followed by full-text
analysis. Extracted data included study objectives, methodologies, AI–IoT technologies
used, key findings, and challenges. Thematic analysis categorized studies by AI tech-
niques, IoT applications, benefits, and limitations, while comparative and meta-analysis
highlighted trends and best practices.

The synthesis revealed improvements in real-time monitoring, predictive analytics,
and automated decision–making through AI–IoT integration. However, challenges such
as data quality, interoperability, ethical concerns, and long-term sustainability remain.
The review acknowledges limitations, including potential publication bias, language con-
straints, and the exclusion of purely theoretical advancements. Future research should
address scalability, security, interdisciplinary collaboration, and emerging AI techniques
like reinforcement learning and federated learning.

3. Understanding AI Agents in Environmental Sciences

Artificial intelligence (AI) agents have become essential instruments in advanc-
ing environmental sciences [55–57]. Leveraging their diverse capabilities, these agents
improve monitoring [58–60], facilitate analysis [61–64], and optimize decision-making
processes [55,65,66], all of which are crucial for tackling complex environmental issues.
This chapter provides an in-depth examination of AI agents, outlining their definitions, clas-
sifications, functionalities, and practical applications in environmental settings (Figure 1).
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Figure 1. Classification of AI agents in environmental sciences.

3.1. Definition and Types of AI Agents

AI agents are self-governing systems capable of sensing their surroundings, processing
data, and executing actions to accomplish predefined goals. In environmental sciences,
they support the handling and interpretation of large datasets, allowing for more efficient
and timely decision making. Based on their operational mechanisms and decision-making
approaches, AI agents are generally classified into three main types: reactive agents, de-
liberative agents, and hybrid agents [67]. Reactive agents [68,69] operate by responding
directly to environmental stimuli based on predefined rules. They lack the capacity to
maintain internal states or plan for future actions, making their behavior entirely dependent
on the current input from their sensors. In environmental applications, reactive agents are
commonly employed for real-time monitoring and alerting systems [70]. For example, a
reactive AI agent might activate an alarm when sensor data indicate a sudden increase
in water pollution levels, facilitating immediate remedial actions [71]. These agents are
valued for their simplicity and speed, although they are limited in their adaptability and
lack of long-term planning capabilities. Deliberative agents [72], on the other hand, possess
the ability to plan and reason about future actions based on internal models of their envi-
ronment. Unlike reactive agents, deliberative agents maintain an internal state that allows
them to consider the consequences of their actions over time [73]. In environmental sci-
ences, deliberative agents are utilized for tasks requiring strategic planning and long-term
decision making, such as climate modeling and ecosystem management [74]. For example,
a deliberative AI agent can assess historical climate data to forecast future temperature pat-
terns and recommend appropriate mitigation strategies [75]. These agents are characterized
by their complexity and adaptability, though they require more computational resources
and extensive data for effective operation [76]. Hybrid agents [77,78] combine the strengths
of both reactive and deliberative agents, enabling them to respond swiftly to immediate
changes while also engaging in long-term planning. This dual capability makes hybrid
agents particularly suitable for dynamic and complex environmental systems [79] where
both real-time responsiveness and strategic foresight are necessary. For example, a hybrid
AI agent deployed in a smart irrigation system can adjust water distribution in real-time
based on current soil moisture levels while also planning future irrigation [80] schedules
based on weather forecasts and crop growth models [81,82]. Hybrid agents offer versatility
and enhanced performance by integrating multiple operational modes, thereby providing
a superior functionality in various environmental applications (Table 1).
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Table 1. Comparison of AI agent types.

AI Agent Type Characteristics Functionalities Advantages Typical Applications

Reactive

Operate based on
predefined rules; no

internal state or
future planning

Real-time monitoring
and alerting [70]

Simplicity, speed

Pollution
detection [83,84],

immediate remedial
actions

Deliberative

Maintain internal
state; capable of

planning and
reasoning about

future actions

Climate modeling,
ecosystem

management

Complex reasoning,
adaptability

Climate forecasting,
resource

management [85]

Hybrid

Combine reactive
and deliberative

capabilities; handle
both immediate and

long-term tasks

Smart irrigation
systems,

autonomous vehicles

Versatility, enhanced
performance

Dynamic resource
allocation, adaptive

systems [40,86]

3.2. Functions and Capabilities

In environmental sciences, AI agents fulfill various functions that improve the effi-
ciency, precision, and effectiveness of monitoring and management processes [87]. Their
capabilities encompass data collection and processing, predictive analytics, and automated
decision making, each contributing to a comprehensive approach to environmental stew-
ardship [88]. Data collection and processing represent the core functions of AI agents.
By utilizing IoT devices and sensor networks, these agents capture real-time data on key
environmental parameters, including air and water quality, temperature, humidity, and
pollutant concentrations [89–92]. The ability to process large volumes of data rapidly
allows AI agents to filter, clean, and organize information for further analysis. Sensor [93]
integration ensures seamless data acquisition from diverse sources, while automated data
cleaning identifies and corrects anomalies and inconsistencies in the raw data, maintaining
data quality and reliability [91,94,95]. This high-speed data processing capability ensures
that environmental scientists have access to up-to-date information essential for accurate
assessments and timely interventions. Predictive analytics represents another significant
capability of AI agents. By analyzing historical and current data, AI agents can forecast fu-
ture environmental conditions and trends. This predictive power is crucial for anticipating
events such as natural disasters, pollution spikes, and climate anomalies, enabling proac-
tive measures to mitigate adverse impacts. Machine learning models, such as regression,
classification, and neural networks, are utilized to detect patterns and generate predictions
from the collected data. Scenario simulation allows AI agents to create various environmen-
tal scenarios, assessing potential outcomes and informing decision making. Continuous
trend analysis ensures that emerging patterns and shifts in environmental parameters are
detected promptly, supporting long-term planning and sustainability efforts. Automated
decision making strengthens the role of AI agents in environmental sciences by delivering
data-driven insights and recommendations. AI algorithms assess available options and
identify the most effective actions based on predefined criteria and real-time data inputs.
This functionality is especially crucial in situations demanding swift responses, such as
emergency management and resource distribution. Decision support systems powered by
AI present relevant data and analytical outcomes through visualization tools, aiding human
decision makers in interpreting complex information. Optimization algorithms identify
the best possible solutions for resource management, pollution control, and conservation
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efforts, while autonomous actions implement predefined measures without the need for
human intervention, especially in time-sensitive situations.

Algorithm Selection Criteria

The suitability of AI algorithms for environmental monitoring was determined based
on three key criteria: data type, computational efficiency, and interpretability.

Data type played a crucial role in algorithm selection. Supervised learning mod-
els, such as random forests and support vector machines (SVMs), were used for labeled
datasets, such as water quality measurements with known contamination levels. In con-
trast, unsupervised clustering techniques like K-Means were applied for anomaly detection
in unlabeled climate datasets, identifying deviations in air pollution or temperature pat-
terns. Deep learning architectures, such as convolutional neural networks (CNNs), were
selected for high-dimensional data, particularly in remote sensing applications where
feature extraction from satellite imagery was required.

Computational efficiency was another critical factor, especially for IoT-based mon-
itoring solutions deployed in resource-constrained environments. Random forests and
decision trees were preferred for edge devices due to their low computational overhead
and real-time processing capabilities, making them ideal for on-device water quality assess-
ments. In contrast, LSTM networks were chosen for time-series water quality prediction,
leveraging their ability to capture long-term dependencies in sensor readings while running
on cloud-based platforms. CNNs, while computationally intensive, were prioritized for
high-resolution environmental image processing, where deep feature extraction provided
significant advantages.

Interpretability was essential for ensuring stakeholder trust and regulatory compliance
in AI-driven decision making. SHAP (Shapley additive explanations) values were used
to explain feature contributions in pollution source identification, providing transparency
for environmental policy enforcement. In regulatory contexts, where decision-making
accountability was necessary, logistic regression and random forests were preferred due
to their explainability, whereas deep learning models were primarily used in cases where
accuracy outweighed interpretability concerns.

For example, LSTM networks were prioritized for time-series water quality prediction,
effectively modeling seasonal variations and pollution trends in lakes and rivers [96–103].
Meanwhile, K-means clustering was applied to identify spatial pollution hotspots by
grouping IoT sensor data based on air quality measurements. These algorithmic choices
ensured that AI-driven environmental monitoring systems were optimized for accuracy,
efficiency, and real-world applicability.

3.3. Real-World Applications of AI Agents in Environmental Monitoring and Management

AI agents have been utilized across diverse environmental applications, showcasing
their potential to enhance sustainability efforts. Their use extends to resource management,
biodiversity conservation, urban planning [96], emissions forecasting [97], and advanced
robotics, highlighting the adaptability and influence of AI in environmental sciences. In
the field of resource management and climate change mitigation [98–100], AI technologies
play a crucial role in optimizing resource use, forecasting environmental trends [101,102],
and enhancing decision-making processes. For instance, in the Great Lakes region, an
AI-powered water quality monitoring system [103] utilizes IoT sensors to continuously
measure parameters such as pH, turbidity, dissolved oxygen, and contaminant levels.
AI agents process this data in real-time, identifying pollution events and forecasting fu-
ture water quality trends. This approach has greatly enhanced proactive water quality
management, helping to mitigate pollution-related challenges more effectively. Biodiver-
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sity preservation has also benefited from AI integration [104,105]. AI-driven drones and
camera traps are utilized for wildlife monitoring, detecting potential threats and aiding
conservation efforts [106]. Machine learning models evaluate ecosystem health, supporting
sustainable management strategies to safeguard biodiversity [107]. However, the imple-
mentation of AI in conservation raises ethical and cybersecurity concerns that must be
addressed to ensure responsible use and protect sensitive environmental data. Urban
planning and green building technologies have seen significant advancements through
AI applications [108]. In urban environments, AI algorithms analyze data on population
density, land use, and infrastructure development to guide sustainable urban expansion.
Machine learning models optimize building designs for energy efficiency, reducing resource
consumption and lowering carbon emissions [109]. Additionally, AI systems monitor and
control indoor environments, ensuring optimal air quality, temperature, and lighting for
occupants. These AI-powered technologies support the creation of smart cities that inte-
grate sustainable development with urban growth, improving residents’ quality of life
while reducing the environmental impact [110,111]. AI has also been pivotal in predicting
CO2 emissions [112,113]. The biogeography-based optimization (BBO) algorithm has been
utilized to model and forecast emission trends, providing policymakers with data-driven
insights necessary for formulating effective environmental policies and strategies [114].
This strategy enables the implementation of targeted initiatives to lower emissions and
counteract climate change effects, ensuring that environmental management practices
remain both efficient and sustainable [115,116]. Innovative applications of AI extend to the
realm of robotics [117,118], where AI agents equip micro and nanoscale colloidal robots
with deep reinforcement learning capabilities. These robots are capable of navigating un-
known environments efficiently, making them particularly impactful in precision surgery
and targeted nanodrug delivery [119]. AI-driven navigation enables robots to avoid ob-
stacles and minimize travel time based on local sensory inputs, enhancing the precision
and effectiveness of medical interventions [120]. Research on autonomous AI agents [121]
in open-world environments is another frontier in environmental applications. These
agents utilize integrative frameworks that combine reinforcement learning with symbolic
planning to handle complex tasks and adapt to new conditions. Such capabilities are
crucial for applications like autonomous vehicles and service robots, which operate in
unpredictable settings and require robust adaptability to function effectively [122,123].
These autonomous systems represent the cutting edge of AI integration in dynamic and
real-world environments, offering solutions that are both intelligent and resilient [124,125].
Finally, AI agents are being incorporated into extended reality (XR) applications [126] to
deliver highly detailed and immersive training experiences [127]. In contexts such as LEGO
brick assembly, AI agents use large language models and vision–language integration to
decide actions based on past experiences [128], enhancing user interaction in XR environ-
ments [129]. This integration facilitates more effective and immersive training experiences,
improving learning outcomes and user engagement through personalized and responsive
AI-driven guidance. AI agents, through their diverse types and sophisticated capabilities,
are transforming environmental sciences by enabling more effective monitoring, analysis,
and decision making. Reactive, deliberative, and hybrid agents each offer unique advan-
tages tailored to specific environmental applications, from real-time pollution detection to
strategic climate modeling. The presented case studies demonstrate the concrete advan-
tages of combining AI agents with IoT technologies, showcasing advancements in water
quality monitoring, biodiversity conservation, urban planning, emissions forecasting, and
cutting-edge robotics. As AI and IoT continue to progress, their integration is expected
to further strengthen the ability of environmental scientists and policymakers to tackle
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urgent environmental issues, promoting sustainability and resilience through intelligent
and forward-thinking management approaches.

3.4. Critical Analysis of Selected Case Studies

The application of AI in biodiversity conservation, urban planning, and CO2 emissions
forecasting has demonstrated significant potential, but critical challenges remain. This
section provides an in-depth evaluation of selected case studies, analyzing their strengths,
limitations, and areas for improvement. The comparative table below summarizes the key
findings, offering a structured perspective on the effectiveness and scalability of AI-driven
environmental monitoring solutions Table 2.

Table 2. Comparative analysis of AI applications in environmental monitoring.

Study Domain AI Technique Strengths Weaknesses

Raihan (2023) [104] Biodiversity
conservation Machine learning

Comprehensive
overview of AI in

conservation; practical
applications for

resource management

Lacks empirical
validation; limited
discussion on AI

adoption challenges

Ullah, Saqib and
Xiong (2024) [105]

Biodiversity
conservation

AI for ecosystem
monitoring

Bridges classical and
modern conservation

approaches;
emphasizes proactive

monitoring

Theoretical focus with
minimal real-world

examples; insufficient
analysis of

AI limitations

Ayoola et al.
(2024) [106]

Biodiversity
conservation Big Data and AI

Highlights predictive
modeling and habitat
monitoring; integrates
big data approaches

Overemphasis on the
USA, limiting

generalizability; lacks
discussion on ethical

and regulatory aspects

Jha et al. (2021) [110] Urban planning AI for smart cities

Broad review of AI’s
role in urban

planning; discusses
smart infrastructure
and sustainability

Largely conceptual;
lacks real-world case

studies and
algorithmic details

Sanchez et al.
(2023) [111] Urban planning AI for sustainability

Focuses on AI’s role in
minimizing ecological

footprints;
forward-looking

perspective

Limited focus on
practical

implementation;
insufficient

exploration of
ethical/social

concerns

Chen et al.
(2021) [112]

CO2 Emissions
forecasting

AI for energy
efficiency

Strong
methodological

framework; practical
insights for emissions

reduction

Limited scalability
discussion; lacks

analysis of
computational

constraints

Aras and Hanifi Van
(2022) [113]

CO2 emissions
forecasting

AI for energy and
emissions

Proposes an
interpretable
forecasting

framework; holistic
approach to

energy-emissions link

Focuses on forecasting
but lacks policy

integration

Nazir et al.
(2024) [114]

CO2 Emissions
forecasting AI ensemble strategies

Uses advanced AI
techniques for

predictive analytics;
informs policy

decisions

Preprint
status—findings not
yet peer-reviewed;
lacks discussion on

ethical and
computational aspects
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AI has played a crucial role in enhancing biodiversity conservation efforts, particu-
larly in wildlife monitoring, ecosystem management, and habitat preservation. Raihan
(2023) [104] provides an extensive overview of machine learning applications in conser-
vation, demonstrating their role in optimizing resource management strategies. While
the study highlights practical applications, it lacks empirical case studies that validate
AI’s effectiveness in real-world conservation settings. Addressing challenges related to
AI adoption, data availability, and ethical concerns would strengthen its contribution to
biodiversity science.

Ullah, Saqib, and Xiong (2024) [105] bridge traditional and AI-driven conservation
approaches, emphasizing ecosystem monitoring and threat identification. The study ef-
fectively positions AI as a tool to complement classical biodiversity methods, but remains
highly theoretical, lacking real-world applications and pilot projects. Further research
should focus on practical implementation, incorporating interdisciplinary collaborations to
address AI’s algorithmic biases and interpretability concerns.

Ayoola et al. (2024) [106] examine AI’s role in big data-driven biodiversity monitoring,
particularly in habitat preservation and species tracking. This study underscores the
benefits of predictive modeling for conservation planning, yet is heavily focused on the
USA, limiting the generalizability of its findings to other ecological and socio-economic
contexts. A more diverse dataset and regulatory discussion would enhance the study’s
applicability to global conservation efforts.

The use of AI in urban planning and smart city development has the potential to
optimize infrastructure, reduce ecological footprints, and improve urban sustainability. Jha
et al. (2021) [110] offer a broad conceptual review of AI’s applications in urban design,
particularly in smart infrastructure and indoor environment optimization. However, this
study remains highly theoretical, lacking empirical validation and real-world case stud-
ies. Future research should focus on specific AI algorithms, such as biogeography-based
optimization (BBO), which has demonstrated effectiveness in smart city planning.

Sanchez et al. (2023) [111] highlight AI’s role in sustainable urban development, pre-
senting a forward-looking perspective on how AI can minimize urban ecological footprints.
While the study effectively discusses potential AI transformations, it lacks practical imple-
mentation strategies and case studies. Additionally, it overlooks critical ethical concerns,
such as data privacy, urban bias, and accessibility in AI-driven planning decisions. Ad-
dressing these gaps through empirical studies and interdisciplinary frameworks would
provide a more comprehensive understanding of AI’s role in urban sustainability.

AI-driven approaches to CO2 emissions modeling have shown promising results in
enhancing energy efficiency and environmental policy formulation. Chen et al. (2021) [112]
present a methodologically sound framework for AI-assisted energy and carbon footprint
modeling, providing practical insights into emissions reduction. However, the study does
not address scalability concerns or the computational costs of deploying AI models in large
metropolitan regions. Including discussions on low-power AI models and edge computing
applications could improve the study’s applicability.

Aras and Hanifi Van (2022) [113] propose an interpretable forecasting framework
for energy consumption and emissions modeling, offering a holistic view of energy–
environment interactions. While the study’s emphasis on interpretable AI is commendable,
it focuses primarily on forecasting, lacking integration with urban policy planning and
emissions reduction strategies. Future research should explore how AI-driven insights can
directly inform and shape environmental policies.

Nazir et al. (2024) [114] explored AI ensemble strategies for CO2 emissions forecasting,
employing advanced deep learning methodologies. The study’s strong predictive analytics
approach makes it highly valuable for policymakers, yet its preprint status means that
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its findings have not been fully validated. Additionally, it does not sufficiently explore
the computational and ethical challenges of AI-driven emissions modeling, limiting its
practical relevance. Addressing these technical and ethical considerations will be crucial
for ensuring the responsible deployment of AI in emissions forecasting.

Despite AI’s growing role in environmental monitoring and decision making, several
challenges remain across all case studies. A common limitation is the lack of real-world
empirical validation, with many studies relying primarily on theoretical discussions rather
than pilot implementations. Additionally, ethical and regulatory considerations are often
underexplored, particularly concerning AI bias, transparency, and governance frameworks.

Future research should emphasize interdisciplinary collaborations, integrating envi-
ronmental science, AI development, and policy making to create more comprehensive
and impactful AI-driven environmental solutions. Expanding pilot projects, open source
AI frameworks, and adaptive learning models will be essential for ensuring scalability,
fairness, and long-term sustainability in AI applications for environmental monitoring.

3.5. AI Techniques: Rationale and Suitability

The selection of AI techniques in environmental monitoring depends on data character-
istics, interpretability requirements, computational constraints, and the specific challenges
of each application. The choice between supervised, unsupervised, and deep learning meth-
ods is guided by the nature of the dataset (labeled vs. unlabeled), the need for real-time
processing, and the feasibility of deploying models on edge or cloud-based systems.

3.5.1. Supervised Learning for Predictive Modeling

Supervised learning algorithms, such as random forests, support vector machines
(SVMs), and gradient boosting are widely used in environmental monitoring due to their
ability to learn complex relationships between labeled input data (e.g., sensor readings)
and output categories (e.g., pollution levels). In water quality prediction, these models
excel at mapping chemical composition data (e.g., pH, turbidity, dissolved oxygen) to
contamination risk levels. The ability to train on historical pollution events allows for accu-
rate forecasting, enabling proactive environmental management. Additionally, ensemble
methods like Random Forests improve robustness by reducing overfitting, making them
well suited for noisy environmental data.

3.5.2. Unsupervised Learning for Anomaly Detection

When labeled data are scarce, unsupervised learning techniques become essential.
K-means clustering, DBSCAN, and autoencoders are particularly useful for detecting
anomalies in climate data, where sudden deviations in temperature, humidity, or atmo-
spheric pressure may indicate early signs of extreme weather events. These models group
similar data points, allowing for the identification of patterns that deviate from the norm.
For example, K-means clustering can detect unexpected temperature spikes that may signal
an impending heatwave, while autoencoders trained on normal air quality patterns can
flag unusual pollutant concentrations as potential hazards.

3.5.3. Deep Learning for Complex Feature Extraction

For applications requiring high-dimensional data processing, such as remote sensing
and satellite imagery, deep learning techniques outperform traditional models. Convolu-
tional neural networks (CNNs) are particularly effective in aerial image analysis, where
they leverage hierarchical feature extraction to identify deforestation patterns, land-use
changes, and water contamination from spectral images. CNN-based models trained on
multispectral satellite imagery can differentiate between healthy and stressed vegetation,
providing insights into drought impact and illegal deforestation activities. Similarly, re-
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current neural networks (RNNs) and long short-term memory (LSTM) networks are well
suited for time-series predictions, such as climate trend forecasting based on historical
temperature and precipitation data.

3.5.4. Balancing Interpretability and Computational Constraints

Model selection is not solely dictated by accuracy but also by interpretability and
computational feasibility. Decision makers in environmental science often require trans-
parent, explainable models to justify interventions. Decision trees and linear regression
models provide straightforward rule-based outputs, making them preferable for regulatory
compliance and policy making. Conversely, deep learning models, while highly accurate,
are often seen as “black boxes”, limiting their adoption in cases where interpretability
is crucial.

Furthermore, computational constraints play a pivotal role in deployment feasibility.
Edge computing applications, such as IoT-based real-time monitoring stations, require
lightweight models due to power and processing limitations. Decision trees and logis-
tic regression are commonly deployed on edge devices for rapid, low-power inference,
whereas cloud-based architectures can accommodate more complex deep learning models,
benefiting from scalable GPU resources.

3.5.5. Hybrid Approaches for Enhanced Performance

Increasingly, hybrid models combining multiple AI techniques offer superior perfor-
mance in environmental monitoring. For instance, an unsupervised clustering method
can first detect anomalies in water quality data, which are then fed into a supervised
classification model to predict contamination sources. Similarly, CNNs can extract spatial
features from satellite images, while traditional machine learning models use these features
for classification, ensuring a balance between interpretability and computational efficiency.

4. Leveraging IoT and AI for Improved Environmental Decision Making

The fusion of the Internet of Things (IoT) and artificial intelligence (AI) [130–132] has
brought significant advancements to environmental sciences [133], enabling more efficient
and data-driven decision-making processes. By leveraging the complementary capabilities
of these technologies, integrated systems facilitate improved data collection, real-time
analysis, and the generation of actionable insights. This convergence enhances the ability
to tackle complex environmental challenges with greater accuracy and speed. This chapter
examines the synergy between IoT and AI, details the workflow of integrated systems, and
explores the advantages of real-time monitoring and responsive management strategies
(Figure 2).

Figure 2. Integrated AI–IoT system workflow.
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The combination of IoT and AI establishes a powerful framework for environmental
monitoring and management [46,60,134]. IoT functions as the foundational layer, enabling
the continuous and automated acquisition of extensive environmental data through a
network of interconnected sensors and devices [135–137]. These sensors capture a diverse
range of environmental parameters, including temperature [46,138], humidity [46], air and
water quality [44,83], soil moisture [138–140], and pollutant concentrations, producing real-
time data streams that offer a holistic perspective on environmental conditions (Table 3).

Table 3. Components of integrated AI–IoT Systems.

Component Description Role in Integrated Systems

IoT sensors [46,83,139]

Devices that collect
environmental data such as
temperature, humidity, pH,

turbidity, etc.

Data acquisition from
various environmental

parameters

Data transmission
[134,141,142]

Wireless communication
standards (e.g., Wi-Fi,
LoRaWAN, cellular

networks)

Transmission of collected
data to centralized

repositories

Edge computing [143] Local data processing units
near data sources

Preliminary data analysis
to reduce latency
and bandwidth

AI algorithms [144–146] Machine learning and deep
learning models

Data analysis, pattern
recognition, predictive

modeling

Decision support systems
(DSSs) [145,147]

Platforms that present data
insights and

recommendations
to stakeholders

Facilitation of informed
decision making

Visualization tools [148,149] Dashboards and
graphical interfaces

Presentation of complex data
in an accessible format

AI amplifies these capabilities by converting raw data from IoT devices into actionable
insights. Through machine learning algorithms and advanced data analytics, it identifies
patterns, detects anomalies, and predicts future environmental trends. This analytical
capability allows AI models to execute advanced tasks such as predictive modeling, which
forecasts pollution incidents or climate irregularities, and automated decision making,
which selects the most effective responses using real-time data inputs. Consequently, the
synergy between IoT and AI not only enhances data richness but also imbues the system
with intelligent processing capabilities, making it possible to respond swiftly and accurately
to emerging environmental challenges.

4.1. Data Quality Challenges and Preprocessing

The accuracy of AI-driven environmental monitoring depends on high-quality input
data. However, IoT sensors, satellite imagery, and monitoring stations often generate
incomplete, noisy, and inconsistent data. Missing values arise from sensor failures and
transmission errors, while sensor drift and human error introduce noise. Integrating di-
verse data sources—satellite imagery, IoT networks, and meteorological stations—requires
harmonization to ensure consistency. Temporal and spatial gaps further disrupt data
streams, complicating predictive modeling.

To address these issues, preprocessing techniques improve data reliability. Missing
data imputation methods include mean, median, or mode replacement for minor gaps, time-
series interpolation for continuous datasets, and machine learning-based imputation using
k-nearest neighbors or autoencoders. Noise reduction techniques such as moving average
smoothing and Kalman filters refine real-time sensor readings, while outlier detection
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methods like isolation forest and DBSCAN identify anomalies in pollution and water
quality data.

Normalization and standardization ensure consistency across datasets. Min-max scal-
ing normalizes sensor readings such as temperature and pollution levels, while z-score
normalization standardizes distributions. Feature engineering techniques like principal
component analysis (PCA) reduce dimensionality in satellite images, while Fourier trans-
form and wavelet analysis extract patterns from climate data.

Multi-source data integration is essential for accurate AI predictions. Data fusion tech-
niques include low-level fusion, which merges raw sensor data, feature-level fusion, which
combines extracted attributes from multiple datasets, and decision-level fusion, which
aggregates independent AI model outputs. Spatial and temporal alignment ensures consis-
tency, with geospatial harmonization linking satellite and ground-based sensor data, while
time-series synchronization corrects inconsistencies in climate datasets. Ontology-based
data standardization unifies formats across environmental domains, and edge computing
allows local preprocessing before cloud-based AI analysis.

Effective data preprocessing enhances AI-driven environmental monitoring by improv-
ing accuracy, reducing noise, and ensuring interoperability. Future research should focus
on automated preprocessing pipelines, self-learning imputation models, and AI-enhanced
real-time data fusion for improved environmental prediction and decision making.

4.2. Workflow of Integrated Systems

The integration of IoT and AI in environmental sciences follows a structured work-
flow, ensuring a smooth transition from data collection to decision making. The process
begins with data acquisition, where IoT devices are strategically positioned to continuously
gather environmental data. These sensors transmit information using communication
protocols such as Wi-Fi, LoRaWAN, or cellular networks to centralized repositories or
cloud platforms [136,150]. In some cases, edge computing is utilized to perform initial data
processing near the source, minimizing latency and bandwidth consumption.

Once acquired, the data undergo preprocessing [151] and analysis to enhance its qual-
ity and usability for AI models. This stage includes data cleaning to eliminate noise and cor-
rect errors, ensuring accuracy and consistency. Data integration merges information from
various sensors and sources to create a unified dataset, offering a comprehensive perspec-
tive on environmental conditions. Feature engineering extracts and selects the most relevant
attributes that characterize the environmental phenomena under investigation [152].

Following preprocessing, AI model training applies machine learning and deep learn-
ing techniques to learn patterns from the refined dataset, enabling accurate predictions
and decision making. Finally, real-time analytics processes incoming data streams instan-
taneously, generating immediate insights and facilitating proactive responses [153]. The
final phase of the workflow involves decision support systems (DSSs) that leverage the
outputs of AI models to aid stakeholders in making informed decisions [145]. Visualization
tools present data and AI-driven insights through interactive dashboards, making complex
information accessible and comprehensible [148]. Automated alerts and notifications are
generated based on predefined thresholds or anomaly detection [60,154] patt, enabling swift
responses to emerging issues. Additionally, DSSs provide actionable recommendations and
strategic options derived from AI analyses, guiding policymakers, environmental managers,
and other stakeholders in their decision-making processes. Feedback loops are established
to incorporate the outcomes of decisions back into the system, continuously enhancing the
accuracy and reliability of AI models through ongoing learning and adaptation.
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4.3. Instantaneous Monitoring and Adaptive Response

One of the key benefits of combining IoT and AI in environmental sciences is the
ability to enable real-time monitoring and rapid response [155–157]. This capability fa-
cilitates the immediate detection of environmental changes and the swift deployment
of corrective measures, helping to minimize potential negative impacts. Real-time data
processing offers multiple benefits that enhance the accuracy, responsiveness, and overall
effectiveness of environmental oversight and control. It enables the immediate detection
of environmental anomalies [158] or pollution events, allowing for timely interventions
that can reduce the severity of environmental damage [159]. AI models can dynamically
adapt their analyses and predictions based on the latest data, ensuring that insights re-
main accurate and relevant even as environmental conditions change. This adaptability
supports enhanced responsiveness, enabling stakeholders to make agile decisions in the
face of rapidly evolving environmental challenges [160–162]. Moreover, real-time pro-
cessing optimizes operational efficiency by minimizing delays between data collection
and action, thereby streamlining resource allocation and workflow management. Several
rapid response scenarios illustrate the practical benefits of instantaneous monitoring and
data-driven decision making. In flood management, IoT sensors placed in river basins
and flood-prone areas collect data on water levels, rainfall, and soil saturation [163]. AI
models process and interpret these data instantaneously to predict flood risks, triggering
automated alerts and initiating evacuation plans or water diversion strategies to mitigate
flood impacts [164,165]. Similarly, in urban air quality control, IoT sensors continuously
monitor pollutant levels. When AI algorithms detect sudden spikes in pollutants like PM2.5

or NO2, immediate measures such as traffic restrictions or industrial emission controls
can be implemented to safeguard public health [166,167]. Another example is wildfire
detection [168,169], where IoT-enabled smoke detectors and temperature sensors deployed
in forested areas provide real-time data on fire conditions [170]. AI agents analyze these
data to identify early signs of wildfires, activating emergency response protocols and
deploying firefighting resources swiftly to contain the blaze [169,171]. In water quality
assurance, IoT sensors monitor parameters such as pH [172], dissolved oxygen [172,173],
and pollutant concentrations in aquatic ecosystems [174–176]. AI models detect anomalies
indicative of pollution events, prompting immediate remediation actions like halting indus-
trial discharges, notifying relevant authorities, and initiating cleanup operations to protect
water quality and aquatic life. Energy grid management also benefits from instantaneous
tracking and AI integration [177]. IoT sensors track energy consumption and generation in
real-time within smart grids [146,178,179]. AI systems process these data to enhance energy
distribution, predict demand surges, and manage renewable energy sources efficiently,
ensuring grid stability and reducing energy wastage [105]. The integration of IoT and AI
fundamentally enhances decision-making processes in environmental sciences [180,181] by
combining comprehensive data collection with intelligent analysis and actionable insights.
The synergy between these technologies facilitates the development of resilient, instan-
taneous monitoring systems capable of adapting to dynamic environmental conditions
and support proactive management strategies [60]. By streamlining the workflow from
data acquisition to decision support, integrated AI–IoT systems empower environmental
scientists, policymakers, and key stakeholders in tackling complex issues with greater
efficacy and responsiveness. As technology evolves, the synergy between IoT and AI is
set to propel further innovations, promoting more sustainable and resilient approaches to
environmental management.
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5. Environmental Data Focus

Environmental data function as the cornerstone for efficient oversight and informed
decision making in environmental sciences [182,183]. Among the various types of environ-
mental data, water quality and climate data are particularly crucial as a result of their pro-
found impacts on ecosystems, public health [184,185], and global climate patterns [186,187].
This section examines the critical parameters tracked in these domains, the role of artificial
intelligence (AI) in data analysis, and the Internet of Things (IoT) solutions utilized to
enable comprehensive and continuous monitoring.

5.1. Water Quality Data

Water quality monitoring [188,189] is crucial for preserving aquatic ecosystem health
and safeguarding water resources for human consumption and industrial applications.
Assessing water quality requires the evaluation of multiple parameters, which together
offer a comprehensive understanding of the water’s overall condition [175,190].

5.1.1. Key Parameters Monitored

Monitoring water quality requires the continuous assessment of several critical param-
eters. The pH level reflects the acidity or alkalinity of the water [117,191], with variations
from the neutral pH of 7 signaling potential contamination from sources like industrial
effluents or acid rain, which may negatively impact aquatic ecosystems and water suit-
ability [192]. Turbidity assesses the clarity of water by measuring the presence of sus-
pended particles. High turbidity levels may result from soil erosion, algal blooms, or
industrial effluents, which can harm aquatic organisms and complicate water treatment
processes [193,194]. Dissolved oxygen (DO) is a crucial parameter that indicates the oxygen
concentration in water [195,196], which is vital for the survival of fish and other aquatic or-
ganisms. Low DO levels can lead to hypoxic conditions, killing fish and disrupting aquatic
ecosystems. Additionally, monitoring contaminants, including heavy metals [197,198] like
lead and mercury, nutrients such as nitrates and phosphates, pathogens including bacteria
and viruses [199,200], and various organic compounds, is crucial for ensuring water safety
for consumption, recreation, and wildlife (Table 4).

Table 4. Key parameters monitored in water quality.

Parameter Significance
Common Measurement

Methods

pH [192,201,202]
Indicates acidity or

alkalinity; deviations signal
pollution sources

pH meters, colorimetric tests

Turbidity [192,193,203,204]
Measures water clarity; high

levels indicate
suspended particles

Turbidity meters,
nephelometers

Dissolved Oxygen [195,196]
Essential for aquatic life; low

levels can lead to
hypoxic conditions

DO meters, titration
methods

Contaminants [197,200]
Includes heavy metals,
nutrients, pathogens,
organic compounds

Spectroscopy,
chromatography, biosensors

5.1.2. AI Applications in Water Quality

Artificial intelligence has revolutionized water quality monitoring [205] by enhancing
predictive capabilities and automating detection processes. Predictive modeling utilizes AI-
powered algorithms to examine historical and real-time data, enabling the anticipation of
potential pollution events [206]. By recognizing patterns and relationships within the data,
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these models can predict contamination events like industrial spills or agricultural runoff,
enabling proactive measures to reduce their impact [207,208]. Furthermore, AI facilitates
automated detection and alerts by processing continuous streams of data from connected
IoT devices [209,210]. Machine learning models have the capability to identify anomalies
in parameters like pH or DO, automatically triggering notifications to environmental
authorities and stakeholders. This enables swift response actions to contain and remediate
pollution sources, thereby minimizing environmental and public health risks [211,212].

5.1.3. IoT Devices for Water Monitoring

The deployment of IoT devices is integral to the comprehensive and continuous
monitoring of water quality. Various types of sensors are strategically deployed to ensure
robust data collection and real-time monitoring. pH sensors [213] are installed at multiple
depths and locations within water bodies to continuously monitor acidity levels. Turbidity
sensors are placed upstream and downstream of potential pollution sources to detect
changes in water clarity [214]. Dissolved oxygen sensors are deployed in critical zones such
as breeding grounds and habitats to ensure adequate oxygen levels for aquatic life [215,216].
Additionally, specialized contaminant sensors are positioned near industrial discharge
points and agricultural runoff areas to detect specific pollutants like heavy metals or
organic compounds [217,218]. Case studies highlight the impact of IoT-integrated water
quality tracking systems. For instance, in the Great Lakes region, an integrated system
employs IoT sensors across various points to collect data on pH, turbidity, dissolved oxygen,
and contaminants. AI agents analyze these data in real-time, detecting pollution events
and predicting future trends, which informs remediation strategies [103]. This system
significantly improved the region’s ability to manage water quality proactively, reducing
the incidence of pollution-related issues. Similarly, smart irrigation systems in agricultural
settings utilize IoT-enabled soil and water sensors to monitor irrigation water quality,
ensuring that crops receive optimal water conditions. AI algorithms analyze sensor data to
dynamically adjust irrigation practices, preventing nutrient runoff and minimizing water
waste. This method improves crop yields while conserving water resources and minimizing
environmental impact [103].

5.1.4. Successful AI–IoT Integrations in Water Monitoring

AI–IoT systems have been successfully implemented across various environmen-
tal monitoring applications, demonstrating significant improvements in accuracy, effi-
ciency, and real-time decision making. These integrations have been particularly effective
in water quality assessment, pollution detection, and climate impact analysis. The fol-
lowing case studies highlight notable implementations of AI–IoT solutions in diverse
environmental settings.

One notable application of AI–IoT integration is in real-time environmental mon-
itoring, where sensor networks continuously collect data on water parameters such as
temperature, pH, turbidity, and dissolved oxygen levels. AI-driven models process these
data to detect anomalies and predict hazardous conditions. For instance, a study by Khan
et al. (2024) [134] developed an IoT-based water quality monitoring system in smart cities,
leveraging low-cost sensors and machine learning algorithms to forecast pollution events,
enhancing urban water safety. Similarly, Ooko et al. (2024) [219] demonstrated the effec-
tiveness of AI–IoT solutions in monitoring and predicting rural household air pollution in
Africa, with potential applications for real-time water contamination tracking.

Beyond urban applications, AI–IoT has transformed smart agriculture by enabling
the real-time monitoring of soil moisture, temperature, and nutrient levels. A study by
Konar (2024) [220] introduced an AI–IoT framework for automated crop management
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in urban farming, integrating predictive analytics to optimize irrigation and fertilization
schedules [221]. These systems have improved water efficiency, reducing resource con-
sumption while maximizing agricultural yields.

In remote and resource-limited regions, dynamic AI–IoT architectures have enhanced
adaptability by enabling updatable AI models on ultra-low-power IoT devices. Alselek
et al. (2024) [222] proposed a framework where AI models are dynamically updated
within 5G-enabled IoT networks, eliminating the need for firmware modifications and
enhancing long-term deployment feasibility. This innovation is particularly beneficial
for water monitoring networks in disaster-prone areas, where AI models must adjust
dynamically to evolving environmental conditions.

AI–IoT has also been instrumental in biodiversity assessment and conservation.
Rathoure et al. (2024) [223] demonstrated how IoT sensor networks and deep learning
models were used to monitor species diversity and habitat health in marine and freshwater
ecosystems. These systems provided real-time ecological insights, enabling more effective
conservation strategies [224].

5.2. Climate Data

Climate data encompass a wide array of indicators that reflect the state and dynamics
of the global climate system. The precise monitoring and analysis of climate data are crucial
for comprehending climate change, forecasting future trends, and developing effective
mitigation and adaptation strategies [225–227].

5.2.1. Essential Climate Indicators

Several key climate indicators provide insights into various aspects of the climate
system [228,229]. Temperature measurements, both surface and atmospheric, are critical for
assessing global warming trends, heatwave occurrences, and their impacts on ecosystems
and human populations. Humidity levels measure the amount of moisture in the air,
influencing weather patterns, precipitation, and the formation of phenomena such as fog
and thunderstorms. Precipitation data, including rainfall and snowfall, are vital for water
resource management, agriculture, and flood forecasting. Wind patterns, which analyze
wind speed and direction, are essential for understanding weather systems, ocean currents,
and the dispersal of pollutants and aerosols (Table 5).

Table 5. Key climate indicators.

Climate Indicator Importance Monitoring Methods

Temperature [230,231]
Assesses global

warming trends and
heatwave impacts

Thermometers, satellite
sensors, weather stations

Humidity [232,233] Influences weather patterns
and precipitation

Hygrometers, weather
balloons, ground-based

sensors

Precipitation [234,235]
Vital for water resource

management and
flood forecasting

Rain gauges, radar systems,
satellite observations

Wind patterns [236]
Essential for understanding

weather systems and
pollutant dispersion

Anemometers, Doppler
radar, weather satellites
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5.2.2. AI in Climate Data Analysis

The role of AI in the analysis of climate data, enhancing the accuracy of climate models
and identifying significant trends and anomalies is crucial [100]. Climate modeling and
forecasting benefit from AI algorithms, particularly deep learning models, which simulate
complex climate interactions and predict future climate scenarios with greater precision.
These models incorporate vast datasets from historical records and real-time observations,
improving the accuracy of predictions related to temperature changes, precipitation and
extreme weather phenomena [237]. Moreover, AI techniques facilitate the identification of
trends and anomalies within climate data. Machine learning algorithms process extensive
climate datasets to identify long-term patterns and sudden irregularities, such as rapid ice
melt in polar areas or unforeseen shifts in rainfall patterns [238]. These insights are vital for
informing focused climate action initiatives and developing strategies to address emerging
climate-related issues.

5.2.3. IoT Solutions for Climate Monitoring

Role of IoT technologies in the comprehensive and continuous collection of climate
data through a system of sensors and remote sensing devices is crucial [239]. A network of
IoT-enabled weather stations is distributed across various regions to collect live data on tem-
perature, humidity, precipitation, wind speed, and other climate indicators. These weather
stations provide granular data that enhance the resolution and accuracy of climate models
and forecasts [137]. Alongside weather stations based on ground [240], satellite imaging
technologies [241,242] and drones equipped [243] with climate monitoring instruments
gather data from remote and inaccessible regions. These devices measure atmospheric
composition, sea surface temperatures, and ice coverage, helping to provide a more com-
prehensive understanding of global climate dynamics. The integration of IoT solutions
with AI-driven analytics ensures that climate data are not only collected comprehensively
but also efficiently analyzed, providing timely and actionable insights for climate scientists
and policymakers [154]. Water quality and climate data are fundamental components
of environmental monitoring, underpinning efforts to sustain ecosystems, protect public
health, and address climate change. The integration of those technologies has signifi-
cantly enhanced the capabilities to monitor these data streams comprehensively and in
real time. AI-driven predictive modeling and automated detection systems improve the
responsiveness and accuracy of environmental management practices, while IoT-enabled
sensor networks ensure continuous and detailed data collection. Combined, AI and IoT
enable more informed and prompt decision making, allowing for preventive measures to
preserve water quality, reduce climate impacts, and support environmental sustainability.

6. Advantages of Combining IoT and AI in Environmental Sciences

The combination of the Internet of Things (IoT) and Artificial Intelligence (AI) in
environmental sciences offers numerous advantages that greatly improve the effectiveness,
efficiency, and sustainability of environmental monitoring and management practices [180].
This integration enhances the precision and accuracy of data collection and analysis, op-
timizes resource use, supports scalable and adaptable monitoring systems, and enables
proactive environmental management [60,238]. These benefits are key to tackle complex
environmental challenges and fostering sustainable practices (Table 6).
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Table 6. Comparative analysis of benefits from AI–IoT integration.

Benefit Description Impact on Environmental
Sciences

Enhanced accuracy and
precision [211,244]

Improved data calibration,
noise reduction, and

high-resolution insights
through AI-driven

data processing

More reliable and detailed
environmental assessments

Improved timeliness of data
and decisions [245,246]

Real-time data processing
and automated decision
making facilitate swift

responses to environmental
changes

Faster and more effective
interventions, reducing
environmental impacts

Cost efficiency and resource
optimization [247,248]

Automation reduces labor
costs, AI optimizes energy
and resource usage, and
predictive maintenance

minimizes
operational expenses

More sustainable and
economically viable

environmental initiatives

Scalability and flexibility of
monitoring systems [246]

IoT networks can be easily
expanded and adapted to

new parameters, supported
by edge computing and

modular design

Ability to handle increasing
data volumes and diverse

monitoring needs

Facilitating proactive
environmental

management [249]

Early warning systems,
predictive maintenance, and
strategic planning enabled

by AI insights

Shift from reactive to
proactive management,
enhancing sustainability

and resilience

6.1. Enhanced Accuracy and Precision

The combination of IoT and AI significantly enhances the accuracy and precision of
environmental data gathering and analysis. IoT devices, outfitted with high-precision
sensors, constantly collect detailed and comprehensive data on a range of environmental
parameters [211]. These sensors track variables like temperature, humidity, air and water
quality, soil moisture, and pollutant levels with exceptional precision [244]. AI algorithms
analyze the massive volume of data produced by these sensors, uncovering complex
patterns and correlations that might be missed by conventional analysis techniques. This
sophisticated data processing ensures the accuracy and reliability of the measurements,
greatly minimizing the margin of error in environmental evaluations. For instance, in
water quality monitoring systems like those deployed in the Great Lakes region [103], IoT
sensors collect live data on pH, turbidity, pollutants and dissolved oxygen levels [250]. AI
agents analyze these data continuously, detecting even slight deviations that may indicate
pollution events. This level of precision allows for early detection and prompt remediation
actions and ensuring the safety of water resources.

6.2. Improved Timeliness of Data and Decisions

Timeliness is a critical factor in environmental sciences, where delayed responses
to emerging issues can exacerbate problems and lead to significant environmental and
public health impacts. The integration of IoT technology and AI ensures that data are not
only collected in real-time but also processed and analyzed swiftly, facilitating prompt
decision making [246]. IoT devices transmit data continuously, and AI systems are designed
to process this information instantaneously, eliminating delays between data acquisition
and actionable insights [147]. The automated decision-making capabilities of AI further
enhance timeliness by enabling systems to respond autonomously to specific environmental
conditions. For instance, in managing urban air quality, AI algorithms process data from
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IoT sensors that monitor pollutant levels in real-time [156]. When pollutant levels surpass
safe thresholds, the AI system can autonomously initiate measures such as adjusting traffic
signals, activating pollution control mechanisms, or issuing public health advisories [251].
This swift responsiveness ensures that interventions are timely and effective, mitigating
adverse effects on public health and the environment.

6.3. Cost Efficiency and Resource Optimization

Integrating IoT and AI leads to significant cost savings and the optimal utilization of
resources by streamlining processes, minimizing the need for manual intervention, and
enhancing operational efficiencies [247]. Automated data collection and analysis minimize
the reliance on extensive manual monitoring efforts, thereby lowering labor costs and real-
locating human resources to more strategic tasks [248]. Additionally, AI-driven predictive
maintenance of IoT infrastructure anticipates equipment failures and schedules timely
maintenance, preventing costly downtimes and extending the lifespan of monitoring sys-
tems. Energy efficiency is another area where cost savings are realized. AI algorithms may
optimize the operation of IoT technology, managing energy consumption effectively [252].
In smart irrigation systems, for instance, AI determines the precise amount of water needed
based on the live data of soil moisture, reducing water and energy usage [81]. This tar-
geted approach not only conserves valuable resources but also lowers operational costs
for farmers, enhancing agricultural productivity and sustainability. Furthermore, AI sys-
tems facilitate the efficient allocation of resources by analyzing data to identify potential
terrains of environmental risk or resource scarcity. This informed allocation ensures that
limited resources such as water, energy, and funding are utilized where they are most
needed, maximizing their impact and promoting sustainable environmental management
practices [253].

6.4. Scalability and Flexibility of Monitoring Systems

A key advantage of combining IoT and AI is the unmatched scalability and flexibility
it provides to environmental monitoring systems. IoT networks can be easily expanded
by adding more sensors to cover larger geographical areas or to monitor additional envi-
ronmental parameters [254]. This scalability ensures that monitoring systems can grow in
tandem with expanding environmental monitoring needs without compromising perfor-
mance. The modular design of IoT devices and AI algorithms allows for the customization
and expansion based on specific environmental requirements [255]. For example, a mon-
itoring system initially designed to track water quality can be seamlessly adapted to
include additional sensors for detecting specific contaminants or to integrate climate data
parameters as needed. This flexibility ensures that monitoring systems remain relevant
and effective as environmental conditions and monitoring objectives evolve over time.
Moreover, the marriage of edge computing with IoT devices enhances the scalability and
flexibility of these systems [256]. By conducting initial data processing at the edge, close to
the data source, the system lowers latency and reduces bandwidth consumption, allowing
for quicker initial analyses and more efficient data handling [257]. This decentralized
approach supports the deployment of large-scale sensor networks in diverse and remote
locations, ensuring comprehensive and real-time environmental monitoring.

6.5. Facilitating Proactive Environmental Management

Perhaps the most transformative benefit of integrating IoT and AI is the facilitation of
proactive environmental management [258]. This proactive approach shifts the focus from
reactive responses to environmental issues to anticipating and preventing them before they
escalate. Live data acquisition and forecasts enable stakeholders to identify future environ-
mental hazards early and implement preventive measures to mitigate their influence [259].
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Early warning systems exemplify proactive management by detecting the signs of potential
environmental hazards such as floods, wildfires, or pollution events before they fully
develop. For example, IoT sensors that monitor water levels and rainfall intensity in flood-
prone areas provide real-time data that AI models analyze to predict flood risks [260]. This
prediction allows automated alerts to be activated and evacuation plans or water diversion
strategies are initiated, effectively reducing the severity of flood impacts [261]. In addi-
tion to emergency response, proactive environmental management encompasses strategic
planning and dynamic resource management [258]. AI-driven analytics offer insights into
long-term environmental trends, supporting the formulation of sustainable policies and
strategies aimed at climate resilience and resource conservation. For example, in renewable
energy management [262], AI systems optimize the distribution and storage of energy
based on live consumption of data and predictive forecasts, ensuring efficient utilization of
renewable resources and improving the stability of the network [263]. Furthermore, proac-
tive management extends to infrastructure maintenance, where AI predicts maintenance
needs based on data from IoT sensors, preventing infrastructure failures and ensuring the
continuous operation of crucial environmental monitoring systems [157]. This foresight not
only enhances the reliability of environmental management practices, but also promotes
long-term sustainability and resilience to evolving environmental challenges [254]. The
integration of these technologies into environmental sciences offers a suite of benefits that
profoundly enhance environmental monitoring and management capabilities. Enhanced ac-
curacy and precision ensure reliable and detailed data collection, while improved timeliness
facilitates swift and informed decision making. Cost efficiency and resource optimization
make environmental initiatives more sustainable and economically viable, and the scala-
bility and adaptability of AI–IoT systems enable flexible and comprehensive monitoring
across diverse environments. Most importantly, the shift towards proactive environmental
management enables the anticipation and mitigation of environmental challenges, fostering
a sustainable and resilient future. As IoT and AI technologies evolve, their combined
integration will undoubtedly be crucial in tackling the complex and ever-changing environ-
mental challenges of our era, fostering innovations that support sustainability, resilience,
and data-driven and informed decision making.

7. Challenges and Considerations

There are many challenges and considerations despite the transformative adoption
of IoT and AI technologies that must be addressed to ensure effective and responsible
deployment. This section explores the main challenges related to data quality and relia-
bility, system integration and interoperability, security and privacy issues, technical and
infrastructure limitations, as well as ethical and regulatory concerns (Table 7) (Figure 3).

Figure 3. Overview of challenges in AI–IoT integration.
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Table 7. Overview of challenges in AI–IoT integration.

Challenge Description Potential Solutions

Data quality and
reliability [264–267]

The IoT sensors must
provide accurate, consistent,
and complete data; dealing

with sensor drift and
environmental interference

Regular calibration,
robust data cleaning

protocols, redundancy

Integration and
interoperability [268–271]

Combining heterogeneous
IoT devices and AI systems
with diverse protocols and

data formats; legacy
system compatibility

Standardized protocols,
middleware solutions,
scalable frameworks

Security and privacy
concerns [150,272–274]

Securing data from
cyberattacks and

unauthorized access;
ensuring the protection of

sensitive environmental and
personal information.

Advanced encryption,
authentication mechanisms,
compliance with regulations

Technical and infrastructure
limitations [221,275]

Reliable connectivity and
power supply in remote

areas; sufficient
computational resources for
AI models; maintenance of

IoT infrastructure

Energy harvesting solutions,
edge computing, robust

maintenance plans

Ethical and regulatory
considerations [224,276,277]

Tackling biases in AI models,
ensuring transparency and
interpretability, obtaining
informed consent for data
collection, and complying

with data protection
regulations

Fairness-aware algorithms,
explainable AI techniques,

clear governance
frameworks

7.1. Data Quality and Reliability

The effectiveness of AI-powered environmental monitoring systems depends on the
quality and dependability of the data gathered by IoT devices [266]. High-quality data
ensure accurate analysis, reliable predictions, and trustworthy decision making, whereas
poor data quality can lead to erroneous conclusions and ineffective interventions. Ensuring
sensor accuracy and regular calibration is essential to maintain precise measurements. Over
time, sensors may drift or degrade [264], necessitating ongoing maintenance to uphold
data integrity. Additionally, data consistency and completeness are critical; incomplete
or inconsistent data [267] can impair the performance of AI models, leading to inaccurate
assessments. Environmental factors can also interfere with sensor performance [265], as
IoT devices deployed in harsh or variable conditions may suffer from physical damage or
exposure to extreme weather, thereby compromising data reliability. Robust data validation
and cleaning protocols are necessary to identify and rectify anomalies, outliers, and errors
in the dataset, maintaining the overall quality of the data being utilized.

7.2. Integration and Interoperability Issues

Achieving the smooth integration of IoT and AI technologies across various plat-
forms and systems is essential for developing unified environmental monitoring solutions.
However, this integration is often hampered by the presence of heterogeneous devices,
differing data formats, and varying communication protocols [268]. IoT devices typically
utilize different communication standards, which can complicate the aggregation of data
into a unified AI system [269]. Additionally, current environmental monitoring infras-
tructures may depend on legacy systems that are not naturally compatible with modern
IoT and AI technologies [270], requiring careful planning and possible system upgrades
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for seamless integration. The scalability of this integration also presents challenges; as
the number of IoT devices increases, managing and consolidating data from a growing
number of sensors becomes more complicated [271]. To enable effective AI model training
and deployment, it is crucial to establish standardized data formats and ensure consistent
data semantics across various IoT devices and platforms, facilitating comprehensive and
coherent environmental analysis.

Interoperability Challenges

Interoperability between heterogeneous IoT devices and AI systems remains a key
challenge in environmental monitoring, particularly in diverse environmental contexts
where different sensor networks, communication protocols, and data formats must seam-
lessly integrate. Many environmental monitoring systems rely on IoT devices from multiple
vendors, each using distinct data transmission standards, leading to compatibility issues
that hinder AI-driven analysis.

To address these challenges, middleware platforms such as FIWARE [269] have been
utilized to standardize data formats and APIs, enabling seamless communication across
diverse IoT ecosystems. For example, in a multi-sensor flood monitoring network deployed
in Southeast Asia, data from disparate sources—including pH sensors from Vendor A and
turbidity sensors from Vendor B—were harmonized using JSON-LD schemas, ensuring
that AI models could interpret and analyze the data consistently [165].

Infrastructure flexibility was further enhanced by deploying AI models within con-
tainerized environments, such as Docker, which facilitated seamless model execution
across edge and cloud computing systems. This approach allowed real-time AI process-
ing on IoT edge devices while ensuring scalability and cross-platform deployment when
computational resources were available.

Despite these advancements, several interoperability challenges persist. Vendor-
specific communication protocols, such as Zigbee and LoRaWAN, require adaptive gate-
ways to enable cross-network integration, increasing system complexity. Furthermore,
many environmental monitoring infrastructures, such as legacy wastewater treatment
plants, operate on outdated SCADA (Supervisory Control and Data Acquisition) systems,
which lack modern API support and require custom-built integration layers [275].

Future research should focus on developing unified IoT interoperability frameworks,
integrating open source data exchange standards, and creating AI-driven protocol adap-
tation layers to enhance compatibility across legacy and next-generation IoT monitoring
systems. By addressing these challenges, AI–IoT integration can become more scalable,
adaptable, and effective in diverse environmental applications.

7.3. Security and Privacy Concerns

The widespread use of IoT devices and the vast amount of data they collect present
significant security and privacy challenges [272]. IoT devices are often placed in remote or
unprotected locations, making them susceptible to both physical tampering and cyberat-
tacks. It is crucial to implement strong encryption, authentication, and access control mech-
anisms to safeguard data integrity and prevent unauthorized access [273]. Furthermore,
environmental data might inadvertently capture sensitive information about individuals
or organizations, raising privacy concerns. For example, IoT sensors in agricultural fields
could collect data that expose proprietary farming techniques, which could be exploited if
not properly protected [274]. Additionally, AI-driven systems face various cybersecurity
threats, such as data breaches, ransomware attacks [150], and adversarial machine learning
attacks that can manipulate AI models to generate incorrect results. Compliance with data
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protection regulations and the implementation of comprehensive security measures are
vital to protect sensitive environmental data and preserve the trust of stakeholders.

7.4. Technical and Infrastructure Limitations

The deployment of integrated IoT and AI systems in environmental sciences is often
constrained by technical and infrastructure limitations that can impede their effectiveness
and scalability. Reliable Internet connectivity is crucial for the real-time transmission of
data from IoT devices to AI systems [275]; however, in remote or underdeveloped areas,
limited bandwidth and connectivity challenges can disrupt data flow and impair system
performance [221]. Additionally, many IoT devices operate in environments where access
to a stable power supply is challenging, relying instead on batteries or renewable energy
sources, which necessitate efficient energy management to ensure continuous operation. AI
models, especially deep learning-based ones, demand significant computational resources
for both training and inference, which can be a limiting factor in environments with
constrained resources. Deploying these models in such environments requires optimized
algorithms and possibly edge computing solutions to handle the computational demands
locally. Moreover, ensuring the ongoing maintenance and technical support of AI–IoT
systems is critical for their sustained operation, involving the management of hardware
failures, software updates, and addressing technical glitches promptly.

7.5. Ethical Considerations

The integration of IoT and AI in environmental sciences raises several ethical chal-
lenges that must be addressed to ensure responsible and equitable technology use.
One major concern is algorithmic bias, where AI models inadvertently perpetuate biases
from training data, potentially leading to unfair or discriminatory environmental man-
agement decisions [276]. Mitigating these biases requires implementing fairness-aware
algorithms and ensuring the use of diverse and representative datasets.

Enhancing explainable AI (XAI) capabilities is crucial for ensuring accountability in
decision-making processes, validating AI-driven recommendations, and building trust, as
complex AI models, particularly deep learning systems, often function as “black boxes”,
making it difficult for stakeholders to understand how decisions are made.

Additionally, privacy concerns arise when AI–IoT systems collect environmental
data that may indirectly involve human subjects. This includes data from agricultural
landowners, industrial facilities, or community water sources. Informed consent and clear
data usage policies must be established to protect individuals’ rights and ensure ethical
data collection practices [224].

Accountability is another critical factor. AI-driven decision-making in environmental
monitoring, such as automated pollution detection and resource allocation, requires clear
accountability mechanisms to address potential errors or unintended consequences. Estab-
lishing governance frameworks that define who is responsible for AI-driven actions will be
crucial to ensure responsible deployment.

7.6. Regulatory Considerations

The evolving regulatory landscape governing AI and IoT in environmental sciences
necessitates compliance with data privacy, security, environmental protection, and ethical
AI usage laws [277]. Various international and regional regulations, such as the General
Data Protection Regulation (GDPR) in Europe and industry-specific guidelines, impose
stringent requirements on data collection, processing, and sharing.

Data protection laws emphasize the need for secure storage and handling of envi-
ronmental data, particularly when IoT sensors monitor industrial emissions, water usage,
or air quality, where data misuse could have legal and financial implications. Strong en-
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cryption, anonymization, and secure access controls must be implemented to safeguard
sensitive information.

Interoperability between different AI–IoT systems also requires standardized regula-
tory frameworks to ensure compatibility and security. Without clear regulations, inconsis-
tencies in data formats, communication protocols, and compliance standards can hinder
seamless integration across industries. Regulatory bodies are increasingly advocating for
the establishment of common AI governance policies that ensure fairness, security, and
accountability in automated decision-making systems.

Moreover, environmental regulations are incorporating AI-driven compliance monitor-
ing tools to enforce pollution controls, sustainable resource usage, and emissions tracking.
AI-powered compliance mechanisms must align with existing environmental laws and
industry standards to avoid legal risks.

By proactively addressing these regulatory challenges through standardized protocols
and collaborative policymaking, stakeholders can ensure the secure, transparent, and
legally compliant deployment of AI–IoT systems [254]. Effective regulatory frameworks
will not only mitigate risks but also foster innovation and trust in AI-driven environmental
monitoring solutions.

7.7. Socioeconomic Factors in AI–IoT Adoption for Environmental Sciences

The integration of AI and IoT in environmental monitoring is not solely a technological
advancement; it is also influenced by socioeconomic factors that determine accessibility,
scalability, and long-term sustainability. The successful deployment of these technologies
depends on financial investment, economic feasibility, policy incentives, public perception,
and workforce readiness.

The cost of deploying AI–IoT systems in environmental sciences remains a significant
barrier, particularly for developing regions. High initial investment costs for sensor net-
works, cloud computing infrastructure, and AI model development can deter widespread
adoption. While large corporations and government agencies may afford sophisticated AI-
driven environmental monitoring systems, smaller municipalities and developing countries
often lack the financial resources to implement such solutions at scale.

To address these challenges, cost-effective alternatives, such as edge computing and
low-power IoT devices, are being explored to reduce dependency on expensive cloud-based
processing. Additionally, public–private partnerships and government-funded initiatives
can bridge financial gaps by subsidizing AI-driven environmental monitoring projects.

The acceptance of AI–IoT solutions in environmental sciences also depends on public
trust and awareness. While AI-driven monitoring systems offer increased accuracy and ef-
ficiency, concerns about data privacy, job displacement, and decision-making transparency
can create resistance to adoption.

For example, automated environmental monitoring systems may replace human-led
inspections, raising concerns about job losses in traditional monitoring sectors. Addition-
ally, communities may oppose AI-driven decision making if they perceive it as favoring
corporate interests over public welfare. Addressing these concerns through transparent AI
governance, participatory decision making, and public engagement campaigns can help
build trust and ensure equitable access to AI-driven environmental solutions.

The widespread adoption of AI–IoT solutions in environmental sciences requires a
skilled workforce capable of managing, maintaining, and interpreting AI-driven insights.
However, many regions face a shortage of professionals with expertise in AI, machine
learning, IoT integration, and environmental data analytics.

Investment in educational programs, vocational training, and interdisciplinary re-
search initiatives can help bridge these skill gaps. Collaboration between universities,
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industries, and government agencies can further equip environmental scientists with AI
literacy while encouraging AI professionals to specialize in environmental applications.

While AI–IoT solutions hold promise for sustainable environmental management,
there is a risk that their benefits will be unevenly distributed. High-income countries
and technologically advanced industries may leverage AI for superior environmental
monitoring, while low-income regions remain vulnerable to climate change and pollution
due to lack of resources.

Ensuring equitable access to AI–IoT technologies requires open source initiatives,
technology-sharing agreements, and funding models that enable developing nations to
adopt low-cost AI-driven environmental monitoring systems. By making these technologies
more inclusive, AI and IoT can contribute not only to environmental sustainability but also
to global economic and social resilience.

8. Future Directions and Emerging Trends

The precision and efficiency of monitoring and decision-making processes have al-
ready seen significant improvements in environmental sciences thanks to the contributions
of technologies like the Internet of Things (IoT) and artificial intelligence (AI). However, the
technological landscape continues to evolve rapidly, promising even greater advancements
and innovative applications in the future. This section explores the anticipated future
directions and emerging trends that are poised to further revolutionize environmental
sciences, with a particular emphasis on water quality and climate data (Table 8).

Table 8. Emerging trends in AI and IoT technologies for environmental sciences.

Emerging Trend Description Potential Applications Anticipated Impact

Advanced machine learning
techniques [266,278–280]

Improvements in deep
learning, transfer learning,

federated learning, and
reinforcement learning for

more sophisticated
environmental data analysis

Enhanced climate
modeling, adaptive

resource management

Greater predictive accuracy
and adaptability

Evolution of IoT
technologies

[221,274–276,281]

Development of LPWAN,
advanced sensors, energy

harvesting, miniaturization,
and edge computing for
more robust and efficient

environmental
monitoring systems

Large-scale sensor
networks, remote and
real-time monitoring

Increased data granularity
and operational efficiency

Integration with
blockchain and edge

Computing [224,238,254,277]

Utilizing blockchain for data
integrity and traceability,
and edge computing for
decentralized processing

Secure data sharing,
real-time analytics

Enhanced security,
reduced latency, and
improved scalability

Global environmental
monitoring

networks [278–280]

Establishment of
standardized global

networks for synchronized
data collection and analysis

Comprehensive climate
monitoring, disaster

response coordination

Unified global efforts
in addressing

environmental challenges

Community engagement
and citizen science [281–285]

Empowering communities
through citizen-driven data

collection, educational
programs, interactive

platforms, and collaborative
research opportunities

Expanded data collection,
enhanced public awareness

Democratized
environmental monitoring

and increased
public participation

8.1. Advancements in AI and Machine Learning Techniques

Machine learning algorithms are constantly evolving, providing increasingly ad-
vanced tools and methodologies that can be applied to environmental sciences [63,286].
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Advancements in deep learning architectures, including convolutional neural networks and
recurrent neural networks, are enhancing the accuracy of pattern recognition and predictive
modeling, enabling more precise outcomes in various fields. These advancements allow
for the better interpretation of complex environmental data, including satellite imagery
for climate monitoring and sensor data for water quality assessment [280,287]. Transfer
learning and domain adaptation are emerging as crucial techniques, enabling AI models
trained on particular data to be adapted for use in different but related domains. This is
particularly beneficial in environmental sciences, where data scarcity in certain regions
or parameters can be addressed by leveraging existing models trained on more abundant
datasets [288]. Explainable AI (XAI) is another significant advancement, providing insights
into how AI models make predictions [289]. This transparency of the AI system is crucial
for ensuring trust and ensuring accountability in environmental decision making [290].
Gaining traction as a decentralized machine learning approach, federated learning [291]
enables models to be trained across multiple devices or servers that hold local data samples,
without the need to exchange the data itself [292]. This enhances data privacy and security,
which is crucial for sensitive environmental data collected from various sources. Addition-
ally, reinforcement learning is being explored for dynamic and adaptive environmental
management tasks, such as optimizing water distribution [279] in smart irrigation systems
or managing renewable energy [278] resources within smart grids.

8.2. Evolution of IoT Technologies for Environmental Applications

Long-range communication with minimal energy consumption, provided by low-
power wide-area networks (LPWAN) [293], which includes LoRaWAN [274,276] and NB-
IoT [221,275] makes these technologies ideal for deploying large-scale sensor networks in
remote or hard-to-reach areas, offering robust, efficient, and versatile solutions for environ-
mental monitoring. Advanced sensor technologies are also being developed, enhancing the
sensitivity, accuracy, and multifunctionality of environmental sensors. Innovations such as
biosensors for detecting biological contaminants in water and advanced meteorological
sensors for detailed climate data collection are expanding the scope of environmental
monitoring [281]. Energy harvesting and sustainable power solutions are addressing one
of the critical challenges of IoT deployment—power supply. Advances in solar, wind, and
kinetic energy harvesting enable IoT devices to operate sustainably without relying on
traditional power sources. This is particularly beneficial for long-term deployments in
environmentally sensitive or remote locations [294]. Additionally, the trend toward the
miniaturization and integration of IoT devices [255] allows for the deployment of dense
sensor networks with minimal environmental footprint. This enables detailed and exten-
sive environmental monitoring, which is crucial for detecting complex spatial and temporal
variations in water quality and climate data. Edge computing is also becoming integral to
IoT technologies, allowing for preliminary data processing and analysis at the source. This
reduces latency and bandwidth usage, enabling quicker initial analyses and more efficient
data handling. The integration of edge computing with IoT enhances the scalability and
flexibility of environmental monitoring systems, ensuring that they can adapt to growing
data volumes and diverse environmental conditions.

8.3. Integration with Other Technologies

The combination of IoT and AI with emerging technologies is set to significantly
boost their impact on environmental sciences. A notable example is blockchain technology,
which can ensure the integrity and transparency of environmental data collected by IoT
devices [254]. Through its decentralized ledger, blockchain facilitates the secure sharing of
data among various stakeholders, promoting trust and accountability in environmental
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monitoring and reporting. Furthermore, blockchain-based smart contracts can automate
and enforce environmental policies and agreements, using data from IoT devices and AI
analyses to ensure adherence and improve resource management efficiency.

As discussed earlier, edge computing enhances the functionality of AI–IoT systems
by enabling decentralized data processing. This integration allows for real-time analytics
and decision making to occur closer to the source of the data, reducing reliance on central-
ized cloud systems and increasing resilience. Additionally, augmented reality (AR) and
virtual reality (VR) technologies are being combined with IoT and AI [224,295] to provide
immersive visualizations of complex environmental data. These technologies make it easier
for stakeholders to engage with and interpret environmental conditions and trends, thus
supporting more effective decision making.

Although still in its early stages, quantum computing presents the potential to trans-
form environmental modeling and simulation [296]. Quantum algorithms are capable of
solving complex environmental problems much more rapidly than traditional computers,
offering the possibility of more precise climate models, the better optimization of renewable
energy systems, and large-scale environmental simulations [238,277]. As quantum com-
puting continues to evolve, its integration with IoT and AI could lead to groundbreaking
advancements in the field of environmental sciences.

8.4. Potential for Global Environmental Monitoring Networks

The establishment of global environmental monitoring networks powered by IoT and
AI promises comprehensive and synchronized data collection and analysis on a planetary
scale. Developing standardized protocols and data formats is essential for integrating
diverse sensor networks and ensuring seamless data exchange across different regions
and countries [279]. International collaboration is crucial to establish common standards
that facilitate global monitoring efforts, enabling the aggregation of data from various
sources into centralized or federated data repositories [280]. Collaborative platforms
that enable data sharing and collaboration among international environmental agencies,
research institutions, and governments can enhance the effectiveness of global monitoring
efforts [278]. These platforms enable the sharing of best practices, technologies, and insights
derived from AI-driven analyses, fostering a collaborative, unified approach to tackling
global environmental challenges. Through real-time global dashboards that visualize
environmental data alongside AI-generated insights, stakeholders gain immediate access
to vital information, which in turn supports worldwide efforts to address critical issues like
climate change, water scarcity, and other urgent environmental concerns.

Additionally, global monitoring networks play an essential role in coordinating dis-
aster response efforts. By analyzing data from various regions, AI algorithms can predict
the spread and potential impact of natural disasters, helping to streamline and enhance
emergency response actions. This comprehensive approach ensures the efficient allocation
of resources and ensures that communities are better prepared to handle and mitigate the
effects of environmental crises.

8.5. Enhancing Community Engagement and Citizen Science

Empowering communities and involving citizens in environmental monitoring can
significantly change the adoption power and reach of IoT and AI technologies. Citizen-
driven data collection expands the scope and granularity of environmental data, providing
valuable insights from diverse locations [285]. Initiatives that encourage individuals to
deploy IoT devices and contribute data to environmental monitoring projects can leverage
smartphones, wearable sensors, and DIY IoT kits. This could enable widespread participa-
tion in data collection, fostering a sense of ownership and accountability among community
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members. Educational programs and workshops that provide training and resources on
how to use IoT and AI tools for environmental monitoring are essential for fostering greater
participation and engagement. These programs equip citizens with the skills needed to
deploy sensors, interpret data, and contribute to AI-driven analyses, thereby enhancing the
overall effectiveness of environmental monitoring systems [284]. Engaging platforms and
mobile apps that enable citizens to view, explore, and interact with environmental data can
significantly boost involvement [283]. These platforms provide real-time updates, personal-
ized insights, and opportunities for community-driven initiatives, making environmental
data more accessible and actionable for the general public. Feedback systems that enable
citizens to share observations, propose improvements, and contribute to decision-making
processes help ensure that environmental monitoring systems address community needs
and perspectives [281]. Incentivizing participation through recognition programs, rewards,
or contributions to community projects can motivate greater involvement in citizen sci-
ence initiatives. This increased participation leads to more extensive data collection and
fosters a culture of environmental stewardship. Collaborative research opportunities that
involve citizens in data analysis and solution development bridge the gap between sci-
entific communities and the public, promoting a deeper understanding of environmental
issues and the co-creation of innovative solutions. The future of environmental sciences
is set to be profoundly influenced by the ongoing advancements and emerging trends in
AI and IoT technologies. As AI and machine learning techniques continue to progress,
they will improve the analytical capabilities and forecasting abilities of environmental
monitoring systems. At the same time, the development of IoT technologies will offer more
robust, efficient, and adaptable data collection methods. The incorporation of additional
technologies, such as blockchain and edge computing, will enhance both the functionality
and security of these systems. Moreover, the potential creation of global environmental
monitoring networks holds the promise of comprehensive and coordinated data collection
on a worldwide scale.

Fostering greater community involvement and supporting citizen science initiatives
will democratize environmental monitoring [282], broadening the impact and reach of IoT
and AI technologies. As these trends advance, the integrated use of IoT and AI will be
central to promoting environmental sustainability, resilience, and data-driven decision
making. Embracing these emerging directions will empower environmental scientists,
policymakers, and communities to work together in addressing the urgent environmental
challenges of our time, leading to a more sustainable and resilient future.

8.6. Research Gaps and Future Directions

Despite significant advancements in AI–IoT integration for environmental monitoring,
several critical gaps remain, limiting the scalability, reliability, and societal impact of these
technologies. Addressing these challenges will be essential for ensuring the long-term
effectiveness of AI-driven environmental solutions.

One major gap is long-term system sustainability. While numerous studies demon-
strate successful short-term AI–IoT deployments, longitudinal data on sensor drift, model
degradation, and hardware resilience remain scarce. Most AI models are trained on static
datasets, yet real-world environmental monitoring systems require adaptive mechanisms to
detect and correct sensor inaccuracies over extended periods [264]. Future research should
explore self-healing AI architectures, incorporating automated recalibration techniques to
maintain accuracy in evolving environmental conditions.

Another key challenge is real-time explainability. While methods like SHAP (Shapley
Additive Explanations) provide transparency for static AI predictions, explainable AI
(XAI) techniques for streaming IoT data remain underdeveloped [290]. Environmental
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monitoring applications require dynamic interpretability frameworks that can clarify why
AI models issue real-time alerts or classify specific pollution events. Edge-based XAI
approaches could improve on-device decision-making by providing interpretable insights
at the point of data collection.

Socio-technical governance is another underexplored area, particularly in balancing
data privacy regulations (e.g., GDPR) with public interest in pollution transparency [224].
While the AI–IoT systems generate large-scale environmental data, few governance frame-
works address how regulatory compliance, community engagement, and ethical con-
siderations should be integrated into AI deployment strategies. Future work should
prioritize participatory design approaches, ensuring that environmental monitoring tech-
nologies are developed collaboratively with affected communities, policymakers, and
industry stakeholders.

To address these gaps, future efforts should focus on three key priorities: (1) fed-
erated learning for privacy-preserving AI collaborations, enabling decentralized model
training without exposing raw environmental data; (2) Digital Twins for scenario testing,
allowing researchers to simulate AI–IoT system performance in diverse environmental
conditions before large-scale deployment; and (3) inclusive AI frameworks that incorporate
perspectives from marginalized communities, ensuring that environmental monitoring
systems equitably benefit all populations. By addressing these challenges, AI–IoT solutions
can become more resilient, transparent, and socially responsible, supporting sustainable
environmental management on a global scale.

9. Comparative Analysis with Existing Reviews

Several recent studies have explored the integration of AI and IoT for environmental
monitoring, focusing on water quality and climate data. While these reviews contribute
valuable insights, the present study distinguishes itself by offering a broader perspec-
tive that includes methodological advancements, interdisciplinary applications, and a
structured evaluation of case studies. The following comparative analysis highlights key
differences and novel contributions.

Novel Contributions of This Study

Unlike Popescu (2024) [60], which primarily examines machine learning for pollu-
tion monitoring, this study provides a structured analysis of AI–IoT applications across
multiple environmental domains. It expands on real-time AI–IoT integration, addressing
preprocessing challenges, data harmonization, and multi-source sensor fusion, aspects that
are only partially covered in existing reviews.

Khan (2024) [134] focuses on real-time AI-driven trend prediction using GRU-
Autoencoder, demonstrating adaptive AI techniques for environmental monitoring. How-
ever, this study goes further by evaluating long-term ecosystem monitoring and discussing
AI model scalability. Unlike Khan’s work, which is limited to short-term data predic-
tions, this study incorporates historical climate analysis and ecosystem-based AI modeling,
offering a comprehensive approach to environmental management.

Arabelli (2024) [297] presents case studies on AI–IoT efficiency in environmental
change detection, but does not explore ethical concerns, governance frameworks, or reg-
ulatory compliance. In contrast, this study examines data governance, privacy concerns,
and explainable AI (XAI) for environmental monitoring, ensuring that AI-driven decision
making aligns with regulatory standards.

Arowolo (2024) [298] emphasizes AI–IoT applications for long-term ecosystem analy-
sis, but lacks an in-depth evaluation of predictive models and data scalability. This study
bridges that gap by presenting a comparative analysis of AI models, exploring hybrid ap-
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proaches that combine deep learning with traditional predictive analytics, making AI-based
environmental monitoring more robust and adaptable.

Panduman (2024) [155] introduces the SEMAR platform, focusing on AI in IoT ap-
plications. While it presents a system-level approach, it does not discuss interoperability
challenges, multi-source data harmonization, or environmental-specific AI applications.
This study offers a broader perspective on AI techniques tailored to environmental chal-
lenges, ensuring seamless data integration from heterogeneous sources.

Manongga (2024) [299] proposes the AIKU model for real-time air quality monitoring,
demonstrating high accuracy and scalability. However, it remains focused on air pollution
and wireless sensor networks, without expanding into water quality, climate monitoring,
or multi-environmental AI applications. This study extends beyond air monitoring by
addressing AI applications in hydrological and meteorological contexts, providing a more
comprehensive environmental perspective.

This comparative analysis highlights the novel contributions of this study, particu-
larly in AI–IoT integration for water quality and climate monitoring, case study-based
evaluations, preprocessing techniques, and ethical considerations. Unlike existing reviews,
which focus on specific AI applications, this study presents a holistic approach, discussing
AI model comparisons, multi-source data integration, and regulatory compliance. Future
research could further explore explainable AI (XAI) for environmental monitoring, as well
as low-resource AI deployment for regions with limited computational infrastructure.

10. Conclusions

The integration of artificial intelligence (AI) agents with the Internet of Things (IoT)
marks a transformative advancement in environmental sciences, offering exceptional ca-
pabilities for monitoring, analyzing, and managing environmental data. This article has
highlighted the multifaceted applications of AI and IoT in tackling critical environmental
challenges, particularly focusing on water quality and climate data. These technologies
synergistically enhance the precision and reliability of environmental monitoring while
facilitating informed decision making, setting the stage for sustainable and resilient envi-
ronmental management practices.

Comprehensive monitoring and data collection are enabled through IoT sensors
deployed in diverse environmental contexts. These sensors continuously gather granular
data, such as pH values, turbidity levels, dissolved oxygen concentrations in aquatic
systems, as well as climate parameters like temperature, humidity, precipitation, and
wind patterns. The substantial volume and diversity of data provided by these devices
form a robust foundation for AI-driven analysis, ensuring real-time access to high-quality
information for environmental scientists.

AI agents employ advanced machine learning and deep learning techniques to process
and interpret the data collected by IoT devices. Through predictive modeling and auto-
mated detection systems, these technologies anticipate pollution events, climate anomalies,
and other environmental shifts. This capability empowers stakeholders to take proactive
measures, minimizing adverse impacts and enhancing the overall efficacy of environmental
management strategies.

Operational efficiency and cost optimization are other benefits of AI and IoT inte-
gration. Automating data collection and analysis reduces dependency on manual efforts,
minimizes operational costs, and ensures the efficient allocation of resources. Moreover,
the AI-powered predictive maintenance of IoT infrastructure prevents costly equipment
failures and prolongs the lifespan of monitoring systems.

The scalability and flexibility of AI–IoT systems make them adaptable to evolving
environmental conditions and emerging challenges. These systems can expand sensor
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networks and incorporate new parameters as required, maintaining their effectiveness and
relevance over time. This adaptability allows for proactive environmental management,
shifting the focus from reactive responses to strategic, forward-thinking solutions. Real-
time data processing supports early warning systems, dynamic resource management, and
informed planning, promoting sustainability and resilience.

Despite their significant advantages, the integration of AI and IoT in environmental
sciences poses challenges such as ensuring data quality, achieving seamless integration,
safeguarding security and privacy, addressing technical limitations, and managing ethical
and regulatory concerns. Overcoming these challenges requires the development of robust
frameworks, standardized protocols, and collaborative initiatives.

Looking forward, advancements in AI and IoT technologies, combined with inno-
vations like blockchain and edge computing, hold immense potential to enhance envi-
ronmental monitoring and management. Establishing global environmental monitoring
networks and engaging communities through citizen science initiatives will democratize
data collection, fostering inclusive approaches to environmental stewardship. As these
technologies evolve, their synergistic application will play a pivotal role in addressing
pressing environmental issues, driving innovations that support sustainability, resilience,
and informed decision making.

The convergence of AI and IoT is a significant milestone in environmental sciences. By
leveraging these technologies, environmentalists and data scientists can develop strategies
to monitor and protect vital resources. As we navigate complex environmental challenges,
the integrated AI–IoT framework emerges as a cornerstone for advancing sustainable and
resilient management practices. Embracing these innovations equips us with the tools to
anticipate and mitigate future challenges, ensuring a healthier, more sustainable world for
future generations.
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