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The transportation industry contributes significantly to climate change through carbon dioxide (CO2) 
emissions, intensifying global warming and leading to more frequent and severe weather phenomena 
such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a 
comprehensive approach for predicting CO2 emissions from vehicles using deep learning techniques 
enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian 
government’s official open data portal, we explored the impact of various vehicle attributes on CO2 
emissions. Our analysis reveals that not only do high-performance engines emit more pollutants, 
but fuel consumption under both city and highway conditions also contributes significantly to 
higher emissions. We identified skewed distributions in the number of vehicles produced by different 
manufacturers and trends in fuel consumption across fuel types. This study used deep learning 
techniques to construct a CO2 emission prediction model, specifically a light multilayer perceptron 
(MLP) architecture called CarbonMLP. The proposed model was optimized by hyperparameter 
tuning and achieved excellent performance metrics, such as a high R-squared value of 0.9938 and a 
low Mean Squared Error (MSE) of 0.0002. This study employs XAI approaches, particularly SHapley 
Additive exPlanations (SHAP), to improve the model interpretation ability and provide information 
about the importance of features. The findings of this study show that the proposed methodology 
accurately predicts CO2 emissions from vehicles. Additionally, the analysis suggests areas for further 
research, such as increasing the dataset, integrating additional pollutants, improving interpretability, 
and investigating real-world applications. Overall, this study contributes to the design of effective 
strategies for reducing vehicle CO2 emissions and promoting environmental sustainability.

Keywords CO2 emissions, CarbonMLP, EXplainable Artificial Intelligence, Vehicle attributes, Fuel 
consumption, Environmental sustainability.

In the 21st century, climate change poses a significant challenge to humanity, as it harmfully affects ecosystems, 
the economy, and human welfare. Carbon dioxide (CO2) emission is the primary cause of climate change. 
Additionally, the reasons for this epidemic include various human activities such as industrial processes, 
energy production, and transportation. While CO2emissions are a global concern, countries such Canada face 
unique challenges due to their reliance on fossil fuel-based transportation across vast geographical landscapes. 
Canada’s transportation sector accounts for a significant portion of the country’s overall greenhouse gas (GHG) 
emissions, making it a priority for policy interventions aimed at reducing environmental impacts1. Moreover, 
these emissions threaten the environment and negatively affect human health. Exposure to air pollution from 
traffic can aggravate respiratory problems such as asthma and chronic obstructive pulmonary disease (COPD) 
and may increase the risk of developing heart disease or stroke2.

Transportation is a crucial foundation of contemporary society, enabling economic transactions, worldwide 
interconnections, and individual movement. However, reliance on fossil fuels has resulted in a substantial and 
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increasing environmental predicament, namely, a surge in CO2 emissions. These emissions are a major cause of 
the increase in greenhouse gases, which accelerate climate change and lead to environmental problems such as 
higher sea levels, extreme weather conditions, and disruptions to ecosystems. Motor vehicles have a significant 
impact on the transportation sector, and are a major contributor to CO2 emissions. In 2020, cars accounted 
for approximately 23% of global CO2emissions3. An average passenger automobile produces 4.6 metric tonnes 
of carbon dioxide annually4. Different transports also emit nitrogen oxides and other pollutants, which also 
contribute to smog formation and acid rain and are harmful to ecosystems5. The World Counts emphasize 
the significant influence of cars on the condition of the air, highlighting them as a primary contributor to air 
pollution6.

Figure 1 shows the distribution of CO2emissions by vehicle type for the year 2022 worldwide7. The graph 
highlights the percentage contribution of each vehicle category to total global CO2 emissions. Comprehending 
and forecasting these emissions are essential for formulating efficient measures to combat climate change.

The complex interplay of these factors influences vehicle CO2 emissions. The most significant contributors 
are the fuel type, engine characteristics, driving behavior, road conditions, vehicle weight, and aerodynamics. 
The level of CO2 emissions produced by vehicles is directly influenced by the type of fuel used.

Biofuels, hydrogen, and electricity produce less CO2than fossil fuels such as gasoline and diesel8. Biofuels 
have a lower carbon footprint, while hydrogen fuel vehicles produce only water vapor as a byproduct9. Engine 
displacement, power output, and technology are factors that influence CO2 emissions. Although advancements 
in engine technology, such as direct injection and turbocharging, can enhance fuel efficiency and reduce 
emissions, it is important to note that larger and more powerful engines often generate higher levels of CO2

10. 
Fuel consumption and CO2emissions also significantly depend on the gearbox mechanism, whether manual 
or automatic11. CO2emissions can be decreased by eco-driving strategies such as maintaining steady speeds, 
activating traffic lights, and moderately accelerating. Conversely, aggressive acceleration, rapid braking, and 
frequent idling contribute to higher emissions12. Vehicle fuel consumption and CO2emissions are influenced by 
traffic congestion, road surface conditions, and inclines. Stop-and-go traffic results in heightened engine idle and 
suboptimal fuel use, whereas uneven road surfaces can generate extra friction, thus affecting fuel efficiency13. 
Furthermore, severe temperatures and the level of winds also affect fuel consumption and emissions14. A 
higher vehicle weight requires increased energy consumption, which results in higher levels of CO2emissions. 
Moreover, the presence of aerodynamic drag affects cars because their streamlined structures encounter reduced 
air resistance, which results in lower emissions15. The development of policies and strategies is important for 

Fig. 1. Transportation Emissions by Vehicle Type Contributing to total CO2 Emissions.
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reducing climate change by estimating vehicle CO2 emissions. To promote cleaner and more fuel-efficient 
vehicles, the prediction and monitoring of CO2emissions from vehicles remains a difficult task. Traditional 
methods for estimating emissions, such as emission factors and vehicle testing, have limitations in accuracy, 
scalability, and adaptability to dynamic driving conditions16. In addition, regulatory bodies have established 
emission factors based on criteria such as vehicle type, fuel type, and other pertinent variables. Although useful, 
these parameters frequently offer a generic approximation and fail to consider the dynamic interaction of factors 
that influence actual emissions in the real world17.

This research was motivated by the pressing need to address the environmental impact of vehicle emissions 
and enhance our comprehension of the processes that cause variations in emissions. Policymakers can make well-
informed judgements about emission reduction methods, sustainable transportation policies, and infrastructure 
expenditures by creating accurate forecasting models18. Furthermore, precise forecasts of CO2 outflows can 
empower consumers to make clear choices when selecting vehicles, emphasize eco-friendly driving practices 
and support sustainable transportation.

This study aimed to address the limitations of existing methods for estimating vehicle CO2 emissions 
by developing a lightweight deep learning (DL) model that leverages real-world data and offers several key 
advantages: 

 1.  Build and train a lightweight DL model using advanced techniques to predict vehicle CO2 emissions accu-
rately from comprehensive datasets. Multiple algorithms are compared to select the most accurate and robust 
predictors.

 2.  We integrate real-world data to train the deep learning model with eXplainable Artificial Intelligence (XAI) 
integration, enhancing realism and accuracy in predicting vehicle CO2 emissions.

 3.  Ensure computational efficiency and scalability by developing a DL model with minimal data preprocessing, 
thereby promoting real-world applicability for widespread adoption in on-board emission estimation and 
regulatory use.

Although the dataset used in this study is specific to Canadian vehicles and emissions data, the developed model 
and techniques can be generalized and applied to similar datasets from other countries and regions. Vehicle 
CO2 emissions are a global issue and are influenced by factors such as engine size, fuel consumption, and vehicle 
type. The predictive techniques and insights gained from this research apply to various geographic contexts, as 
they leverage universal vehicle characteristics. Furthermore, the methods demonstrated in this study provide a 
framework that can be easily adapted to account for regional differences in emissions standards, vehicle types, 
and driving conditions, making it relevant for national and international efforts to reduce CO2 emissions.

This study analyzed recent CO2 emissions trends for a variety of vehicle types and models from multiple 
manufacturers. This study uses data from the Canadian government’s official open data website to show how 
various car features affect CO2 emissions. The data preparation process comprises rigorous cleaning, data 
engineering, and transformation procedures to increase dataset quality and prediction accuracy. This study 
employs advanced deep learning techniques, specifically a multilayer perceptron (MLP) architecture, to improve 
the prediction accuracy of CO2 emissions. Although traditional machine learning models are mentioned for 
performance comparison, the primary focus of this study is on the deep learning approach, which leverages its 
strengths to achieve more accurate CO2 emission projections. Furthermore, XAI methodologies, such as Shapley 
Additive exPlanations plots, are used to improve model interpretability. This integration not only enhances 
model transparency but also provides more detailed insights into the impact of numerous vehicle characteristics 
on CO2 emissions predictions, allowing for the creation of more effective emission reduction plans.

In this paper, we present an in-depth analysis of the forecasting CO2 emissions from vehicles using deep 
learning and XAI techniques. Section ’Related Work’ review important literature on the topic to provide a 
context for our research. Section ’Method’ describes the approach used, which included data collection, 
preprocessing, model development, and evaluation techniques. Section ’Result Analysis’ presents the results 
and discussions that evaluate the performance of the proposed model and discuss valuable achievements. The 
’Conclusion and Future Work’ closes by summarizing the main contributions, identifying shortcomings, and 
suggesting areas for future research.

Related work
Artificial intelligence (AI) models have shown promise in reducing carbon dioxide (CO2) emissions through 
various mechanisms. Studies have shown that AI can notably lower CO2emissions, particularly in regions with 
advanced industrial structures19,20. AI algorithms enhance the Measurement and Verification (MV) protocols for 
energy-efficient infrastructure, leading to substantial reductions in both energy consumption and emissions21. 
For example, AI techniques, such as multi-gene genetic programming, have been effectively applied to model 
and optimize CO2capture in coal-fired power plants, achieving over 99% accuracy in emission predictions22. 
These AI models provide valuable insights for improving the design and operational strategies of CO2capture 
systems, contributing to long-term decarbonisation efforts22. Additionally, AI strategies have been successfully 
implemented at the city level to further reduce carbon emissions and support carbon neutrality goals23.

The application of AI in the chemical industry has also gained recognition for its ability to optimize processes, 
predict emissions, and support sustainable practices. This contribution is essential for the industry’s transition 
toward net-zero emissions and overall24. The impact of AI on carbon reduction varies across countries, with more 
pronounced effects observed in high-carbon emission and high-income nations. This variation underscores 
the importance of considering industrial and demographic structures when designing strategies for emission 
reduction25. Collectively, these findings highlight the vital role that AI plays in advancing carbon neutrality and 
offer insights for policy recommendations and sustainable development strategies.
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The transportation sector, which is responsible for approximately 16.2% of global CO2emissions, has 
also benefited from AI-driven advancements26. Machine learning (ML) algorithms, such as Random Forest, 
Decision Tree, and Regression Models, have been employed to accurately predict CO2emissions27. Among these, 
Gradient Boosting Regression (GBR) has been proven to be the most effective . These ML algorithms consider 
both socioeconomic and transportation-related factors when predict emissions28. Supervised machine learning 
regression approaches, validated through metrics such as the Root Mean Square Error (RMSE), have been used 
to enhance the accuracy of CO2emission forecasts29. In particular, the real-time forecasting of CO2emissions 
from automobiles in India has demonstrated the effectiveness of constructing ML models and optimizing 
hyperparameters to achieve precise predictions30.

Deep Neural Networks (DNNs) have gained popularity for estimating CO2emissions becuase of their ability 
to analyze complex patterns and correlations in large datasets. Advanced deep-learning algorithms, such as Long 
Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Recurrent Neural Networks (RNN), have 
been successfully utilized to forecast vehicle emissions with notable success31. Integrated models combining 
these algorithms have shown promise for enhancing the accuracy of emission predictions. For instance, LSTM 
and BiLSTM models have been effectively employed to predict CO2emissions based on vehicle characteristics, 
such as engine size, fuel type, and consumption rates32. Additionally, ensemble learning techniques that utilize 
deep neural networks have been suggested to reduce uncertainty in predicting vehicle energy efficiency, further 
improving the accuracy and robustness33.

Ensemble approaches, which combine multiple models and algorithms, have proven to be highly 
interpretable, accurate, and robust in predicting carbon-related parameters. These models are invaluable tools 
for policymakers and environmental decision-making34,35.For example, models trained using real-time sensor 
data collected through OBD-II ports in vehicles have provided scalable and efficient methods for monitoring 
emissions at the vehicle level36. One particular machine learning model, UWS-LSTM, has demonstrated precise 
predictions of CO2emissions in hybrid vehicles, making it highly effective for smart vehicle applications that 
require fast and efficient results37.

explainable AI models have demonstrated varying levels of precision in estimating CO2emissions from 
vehicles. Studies have indicated that advanced non-linear multivariate models, such as ENGM(1,4), are more 
effective than conventional statistical models in forecasting transportation sector emissions, achieving superior 
accuracy38. Furthermore, advanced AI approaches, such as feed-forward neural networks (FFNN), adaptive 
network-based fuzzy inference systems (ANFIS), and LSTM, have been employed to forecast CO2emissions, with 
LSTM exhibiting particularly high accuracy39. Additionally, the use of Shapley Additive ExPlanations (SHAP) 
for lane-change decisions has provided clear and understandable explanations for the factors influencing AI 
model decisions, thereby improving the interpretability and trustworthiness of these models40.

In summary, AI’s potential to reduce CO2 emissions is widely recognized across various sectors, including 
energy, chemicals, and transportation. AI not only optimizes processes and predicts emissions but also supports 
sustainable practices and informs policy-making. The integration of AI in emission reduction efforts represents 
a critical pathway toward achieving carbon neutrality and addressing climate change on a global scale An 
overview of the Literature Review is given in Table 1

Ref. Dataset Model Accuracy Limitation

32 Canadian government’s open data portal LSTM and BiLSTM R2= 93.78%
Relies on existing datasets, challenging the capture of 
real-time or diverse data sources, affecting adaptability 
to dynamic emission scenarios.

41 Data collected from road tests using PEMS system and OBDII 
interface Gradient Boosting R2= 61.26% Validation coefficients (R2 = 0.61, MSE = 0.77) suggest 

improvement needed in predictive performance.

42 Automotive industry dataset, fuel consumption based on NEDC 
and WLTP tests MLP R2 value < 

98.00%
Focused on passenger cars with internal combustion 
engines, limiting scope to this vehicle type.

43 Real-world GPS tracking data from electric vehicles in Japan LightGBM, XGBoost, 
ANN, and LR R2=98.00% Model overlooks factors such as additional loads, 

driver behavior, and traffic conditions.

44 Data from literature, covering fluidized bed gasifiers at steady-state 
conditions Gradient Boosting R2=84.68% Highlights need for Explainable AI (XAI) but doesn’t 

address broader implications of adopting XAI.

37 Data from hybrid vehicle performance and 20+ operational 
parameters, collected using SprintIR-R 20 CO2 sensor UWS-LSTM R2=97.50% Dataset standardization not detailed, affecting 

reproducibility.

45 Government of Canada dataset on light-duty vehicles (2017–2021) Univariate Polynomial 
Regression R2=98.60% Lacks higher-performing model for predictive fuel 

consumption and dataset with more features.

46 On-road remote sensing measurements linked to I/M records for 
103,831 light-duty gasoline vehicles in Hangzhou, China

NN, RF, XGBoost, and 
Ensemble model R2=88.00% Relies solely on ORRS data, which may misidentify 

high/low-emitting vehicles.

47 World Bank, Turkish General Directorate of Highways, and Turkish 
Statistical Institute data

MLP, XGBoost, and 
SVM R2=98.86% Examined only four scenarios based on correlation 

impact of input values.

48 Data from Portable Emissions Measurement System (PEMS) 
recording NOx, CO2, and other pollutants from diesel vehicles

Gradient Boosting 
Regression R2=99.00% Prediction accuracy limited by minimal input features.

49 Data collected from real-world driving conditions of several 
braking events CatBoost R2=83.00% Dataset limited to 600 braking events, not fully 

representing all scenarios.
50 Open Energy Data Initiative (OEDI) dataset ML Ensemble Model 94.70% Model is costly and computationally intensive.

Table 1. Overview of the literature review.
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Methods and materials
The methodology of this study centers exclusively on deep learning techniques to comprehensively forecast CO2 
emissions from vehicles. The process began with preprocessing and data collection, followed by the creation 
of the MLP model. Additionally, explainable AI (XAI) methods, particularly Shapley Additive Explanations 
(SHAP), have been utilized to enhance the interpretability and reliability of predictions. An overview of the 
methodology used in this study is shown in Figure 2.

Data collection and exploration
This study’s dataset, which was obtained from Kaggle, provides extensive information on how CO2 emissions 
vary depending on various vehicle parameters. The dataset compiles data from the Canadian government’s 
official open data website, spanning a period of seven years Dataset. The dataset, which includes 12 columns 
and 7385 rows across a 7-year span is an extensive information source. Information on vehicle models, fuel 
types, transmissions, city and highway fuel consumption ratings, and CO2 emission levels is all included. Table 2 
presents an overview of the characteristics, explanations, and associated values of the dataset.

The “uel Consumption Comb (mpg)” column in the dataset was originally added to represent fuel 
consumption in miles per gallon (mpg). However, additional analysis revealed that the reported values did 
not match the normal conversion from litres per 100 km (L/100 km) to miles per gallon (mpg)51. The correct 
conversion formula is as follows:

 
mpg = 235.215

L/100Km
 (1)

Variable Description Example Values

Maker Manufacturer of the vehicle ACURA, TOYOTA, FORD

Model Specific model of the vehicle ILX, MDX 4WD, RDX AWD

Vehicle Class Classification of the vehicle type COMPACT, SUV - SMALL, MID-SIZE

Engine Size (dm3) Engine displacement in cubic decimeters 2, 2.4, 3.5

Cylinders Count of engine cylinders 2, 4, 6

Transmission Type of vehicle transmission AS5, M6, AV7

Fuel Type Type of fuel used Z (Denotes a specific type, e.g., gasoline, diesel)

Fuel Consumption City (L/100 km) City fuel consumption rate in liters per 100 km 9.9, 11.2, 6

Fuel Consumption Hwy (L/100 km) Highway fuel consumption rate in liters per 100 km 8.5, 9.6, 5.9

Fuel Consumption Comb (L/100 km) Combined fuel consumption rate in liters per 100 km 6.7, 7.7, 5.8

Fuel Consumption Comb (mpg) Combined fuel consumption rate in miles per gallon 33, 29, 48

CO2  Emissions (g/km) Carbon dioxide emissions per kilometer 196, 221, 136

Table 2. Description of dataset features.

 

Fig. 2. Methodology Diagram Illustrating the Entire Process Described in the Paper, from Data Collection to 
Model Evaluation and Interpretation.
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Due to the disparity between the reported “Fuel Consumption Comb (mpg)” values and the expected values 
estimated using the conversion procedure, this column was removed from the dataset. Instead, the column 
reflecting fuel usage in litres per 100 km (L/100 km) will be used for additional analysis and modelling.

A distinct pattern emerged from the analysis of CO2 emissions by vehicle model: vehicles with high-performance 
engines, such as SRT, Rolls Royce, and Lamborghini, had the highest emissions, whereas fuel-efficient models, 
such as Smart and Honda, exhibited the lowest emissions. This observation is consistent with the theory that 
large engines produce more CO2.

To quantify these observations, we calculated the mean CO2emissions for 41 distinct car models displayed in 
the visualization. The mean was estimated by grouping the dataset by vehicle maker and applying the following 
formula52:

 
Mean CO2 Emissions = 1

n

n∑
i=1

CO 2i (2)

where n represents the total number of entries for a specific vehicle model, and CO2i denotes the CO2 emissions 
for each entry.

This analysis, illustrated in Figure  3, provides insightful information on how vehicle design influences the 
environmental impact and underscores the importance of considering emissions in feature selection for 
predictive analysis.

The distribution of vehicles manufactured by each company was skewed when analyzing the dataset collected 
over a period of seven years in Canada. Ford had the highest number of cars (623); however, its average CO2 
emissions were relatively moderate. This distinction highlights that while Ford’s large vehicle count (623 cars × 
270 g/km/car = 168,210 g/km CO2 emissions) significantly contributes to total emissions, it does not result in 
the highest average emissions per vehicle. In contrast, SRT had the fewest automobiles in the dataset, whereas 
Chevrolet was the second-largest manufacturer in terms of vehicle count. Figure 4 provides an overview of the 
number of vehicles produced by each manufacturer, demonstrating their contributions to overall CO2 emissions.

The analysis of the fuel usage trends for various fuel types revealed some notable patterns, as shown in 
Figure 5. Among the fuel types, ethanol (denoted as “E”) exhibited the highest fuel consumption. This increased 
consumption may be attributed the lower energy density of ethanol compared to that of gasoline. In contrast, fuels 
labelled “X” (regular gasoline), “Z” (premium gasoline), and “D” (diesel) demonstrated lower fuel consumption 
levels. Although natural gas, represented by “N”, is included in the dataset, only one vehicle utilized this fuel, and 
therefore it is not prominently displayed in Figure 6 due to its limited representation.

Figure 6 illustrates that despite the higher fuel consumption of ethanol, its CO2 emissions are comparable to 
those of other fuels, particularly gasoline and diesel. This suggests that while ethanol may require more fuel per 

Fig. 3. Mean CO2 Emissions by Vehicle Make: This figure shows the relationship between vehicle models and 
CO2 emissions, helping identify designs that contribute to higher emissions and guiding feature selection in 
our predictive analysis.
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kilometer, it does not produce proportionally higher CO2 emissions. Most vehicles in the dataset emit CO2 in the 
range of 200 to 300 g/km, regardless of fuel type, with ethanol slightly overlapping this range.

A summary of the CO2 emissions dataset shown in Table 3 is provided using descriptive statistics. Important 
details including the engine size (ES) litres, number of cylinders, fuel consumption (FC) in city, highway, 
combination (litres per 100 km), CO2 emissions (grams per kilometer), and the total number of observations 
are listed in the table. As we can see, there is a standard deviation of 1.35 litres and an average engine size of 3.16 
litres. A variety of engine sizes, ranging from 0.9 litres to 8.4 litres, are also shown by the statistics. This table 
also provides information on the differences in CO2 emissions and fuel usage between the different cars. This 
synopsis establishes the framework for additional investigation into the variables impacting CO2 emissions.

Interesting trends were found by analyzing the links between the features (apart from the object features) 
using the correlation heatmap in Figure 7. Engine size demonstrates a robust positive correlation with cylinder 
count (0.93), and a moderately strong correlation with fuel consumption measures: city (0.83), highway (0.75), 
and combined (0.81), as well as CO2 emissions (0.85). This indicates that larger engines with more cylinders 

Fig. 5. Histogram of Fuel Consumption by Fuel Type: This figure illustrates how fuel types affect fuel 
consumption, a key predictor of CO2 emissions. Analyzing these trends enhances our understanding of the 
impact of fuel type choices on model predictions and emissions.

 

Fig. 4. Number of Vehicles Made by Maker (Company): This figure shows the distribution of vehicles by 
manufacturer, highlighting their impact on overall CO2 emissions. This insight guides our handling of 
manufacturer-related categorical variables in the modelling phase.
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(0.93) typically lead to higher fuel consumption, with city consumption exhibiting the strongest association. 
Additionally, vehicles with higher city fuel consumption generally have higher highway and combined fuel 
consumption, as demonstrated by the high correlations between these measures (all above 0.94). This reinforces 
the idea that greater fuel consumption during city driving is associated with higher consumption on highways 
and overall. Correlation analysis was conducted using Python, with Pandas for data handling and Seaborn for 
generating the heatmap.

Data Pre-processing
Data pre-processing is a crucial step in any deep learning modelling, as it directly affects the quality of the 
model’s predictions. In this study, we carried out a comprehensive and methodical pre-processing phase to ensure 
that the dataset was clean, structured, and ready for analysis. Pre-processing involves handling missing values, 
transforming variables, addressing outliers, and preparing the data for the deep learning pipeline. The goal of 
this process was to eliminate any inconsistencies or anomalies that might hinder the model’s performance. The 
pre-processing workflow involved several key steps, which are outlined below:

 Data cleaning

• Missing and null values: Missing or null values in the dataset can lead to bias or inaccuracies in model train-
ing, especially when important variables are incomplete. The dataset was checked for both the values.

• Duplicate Values: Duplicate records in the dataset can skew results, leading to incorrect model outcomes 
by over-representing certain observations. A thorough check was conducted to identify any duplicate rows. 
After determining whether any entries in the data were duplicates, values were eliminated. This prevents the 
analysis from being skewed and guarantees that each data point represents a distinct observation.

Data engineering and transformation
Data engineering is crucial for improving the predictive capability of deep learning models. In our study, we 
used a variety of strategies to prepare and modify the dataset, ensuring that the model could accurately forecast 
CO2 emissions based on different vehicle features.The following methods were applied to prepare the dataset:

• Outlier Detection and Removal: Outliers were identified using z-score analysis and eliminated from the 
dataset. This phase is critical for avoiding skewed model predictions induced by extreme values that could 

Statistic ES (L) Cylinders FC City (L/100 km) FC Highway (L/100 km) FC Comb. (L/100 km) CO2 Emissions (g/km)

Count 7385 7385 7385 7385 7385 7385

Mean 3.160 5.610 12.55 9.040 10.98 250.6

Standard Deviation 1.350 0001 3.500 2.220 2.900 58.51

Minimum 0.900 0003 4.200 0004 4.100 0096

Median 0003 0006 12.10 8.700 10.60 0246

Maximum 8.400 0016 30.60 20.60 26.10 0522

Table 3. Descriptive statistics of vehicle parameters.

 

Fig. 6. Scatter Plot of CO2 Emission by Fuel Consumption: This figure compares CO2 emissions across fuel 
types, highlighting their environmental impact.
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affect the learning process. Data points with a z-score greater than 2.6 were declared outliers and eliminated, 
ensuring that the model was trained on clean data. 

 
zi = xi − µ

σ
 (3)

 Where xi is an individual data point, µ is the mean of the data, and σ is the standard deviation.

• Categorical Feature Encoding: To transform categorical variables (such as make, model, vehicle class, trans-
mission, and fuel type) into numerical representations suitable for the model, we first used one-hot encoding. 
This approach divides each category into binary columns, allowing the model to effectively learn from these 
variables. However, we also assessed target encoding, which calculates the mean target value for each category 
and replaces it with mean values. Although target encoding can reduce dimensionality, we discovered that 
one-hot encoding improved the interpretability of the SHAP values in our models.

• Normalization and Scaling: To ensure that every feature contributes equally to the model’s performance, the 
numerical features were min-max scaled. This scaling method converts each feature to a common range (0 
to 1), thereby reducing the impact of varying units and magnitudes. This was particularly crucial for features 
such as fuel consumption and engine size, which had different scales. The equation for min-max scaling is: 

Fig. 7. Correlation Heatmap of Vehicle Characteristics: The correlation heatmap shows strong relationships 
among key numerical features, particularly engine size, cylinder count, and fuel consumption metrics. 
This suggests multicollinearity that can affect model performance and assists in feature selection for better 
interpretability.
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xscaled = x − xmin

xmax − xmin
 (4)

 where xmax and xmin are the minimum and maximum values, respectively.

In summary, the data engineering process was thorough and aimed at enhancing the predictive capabilities 
of the model. By detailing the methods used for data preparation and their resultant effects on the dataset, we 
provide a clearer understanding of how these techniques contribute to overall analysis and modelling efforts.

Dataset splitting and validation
The performance and robustness of the model were rigorously assessed in this study using a 5-fold cross-
validation technique. This approach successfully generalizes the model to unseen data, lowering the possibility 
of overfitting and enhancing the accuracy of our findings. The dataset was systematically partitioned into five 
equal sections, denoted as D1, D2, D3, D4, and D5. In each iteration of the cross-validation process, four of 
these sections were used for training the model and the remaining section served as the validation set. This 
process can be mathematically represented as follows:

 Training Set = Di for i ∈ {1, 2, 3, 4, 5} (5)

 Validation Set = Dj for j ∈ {1, 2, 3, 4, 5}, j ̸= i (6)

This cross-validation procedure was repeated five times to ensure that each subset was used once as the validation 
set. The overall process is summarized as follows: 

 1.  Iteration 1:

• Training on D2, D3, D4, D5
• Validation on D1

 2.  Iteration 2:

• Training on D1, D3, D4, D5
• Validation on D2

 3.  Iteration 3:

• Training on D1, D2, D4, D5
• Validation on D3

 4.  Iteration 4:

• Training on D1, D2, D3, D5
• Validation on D4

 5.  Iteration 5:

• Training on D1, D2, D3, D4
• Validation on D5

The 5-fold cross-validation method provides a more legitimate estimate of model generalization by testing 
multiple data partitions, thereby reducing the potential for overfitting. By averaging the performance metrics 
across all five iterations, we comprehensively evaluated the performance of the model. This approach ensures 
that the findings are not unduly influenced by a specific train-test split, offering a more reliable assessment of the 
model’s predictive capabilities.

Model building
Deep learning is a subset of machine learning that uses artificial neural networks and is a useful method for 
discovering intricate patterns and relationships in data53. Deep learning models are distinct from typical 
machine-learning algorithms in that they are composed of numerous layers of interconnected neurons, which 
allows them to automatically extract meaningful features from raw data54. Deep learning models can be especially 
useful in CO2emission prediction because of their capacity to manage non-linear correlations between vehicle 
features and emissions. Owing to their multi-layered architecture, deep learning models can capture these 
complicated interactions more efficiently than traditional machine learning models, which makes it difficult to 
handle such complexities55. A variety of deep learning architectures are appropriate for regression problems such 
as CO2emission prediction56. This section presents the proposed architecture and its development procedures.

Proposed model development
This study introduced a novel approach for predicting CO2 emissions from vehicle attributes. We constructed a 
light deep learning model using a multilayer perceptron (MLP) architecture. MLPs, which are neural network 
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foundations, are composed of interconnected neuronal layers. This method harnesses the power of deep learning 
to identify intricate connections between input features and the target variable (CO2 emissions).

Input Format: The input data for the proposed deep learning model consists of a dataset with multiple 
features related to vehicle attributes, as described in Table  2. These features include attributes such as Make 
(vehicle manufacturer), Model, Vehicle Class (VC), Engine Size (ES), Cylinders, and Fuel Type (FT), along with 
various measures of fuel consumption city (FCCity), fuel consumption highway (FCH), and fuel consumption 
combined (FCcomb).

In this study multiple densely connected layers were used, each with ReLU activation for non-linearity. The 
design consists of an input layer, three hidden layers with 128, 64, and 32 neurons each, and a single regression 
(linear activation) neuron in the final output layer.

The model was built using the Adam optimizer, which is a highly efficient tool known for its effectiveness, 
especially in large-scale models. The mean squared error (MSE) loss function is also employed. The design 
was facilitated using TensorFlow’s Keras Application Programming Interface (API). Figure 8 provides a visual 
representation of the architecture of the proposed deep learning model.

The goal of the proposed model is to forecast CO2 emissions using the provided dataset. In its formulated 
form, the model architecture is:

 Input: xtrain (shape: (n, m)) (7)

 

Hidden 1: h(1) = ReLU
(
xtrain · W (1) + b(1))

(shape: (n, 128))
 (8)

 

Hidden 2: h(2) = ReLU
(
h(1) · W (2) + b(2))

(shape: (n, 64))
 (9)

 

Hidden 3: h(3) = ReLU
(
h(2) · W (3) + b(3))

(shape: (n, 32))
 (10)

 

Output: Ypred = h(3) · W (4) + b(4)

(shape: (n, 1))
 (11)

In the given neural network architecture, the entire process from input to output can be traced through 
several equations, each detailing a specific layer or operation. The input layer defined in Equation  (7), uses 
the training data xtrain which has n samples and m features. Equation (8) describes the first hidden layer h(1) 
where the ReLU activation function is employed after combining the inputs with weights W (1) and biases b(1)

Fig. 8. Architectural Diagram of the Proposed CarbonMLP Model: Shows the input layer with three hidden 
layers (128, 64, and 32 neurons, respectively), and the output layer with a single regression neuron. Each layer 
uses ReLU activation functions, except for the final output layer, which uses linear activation.
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. Further transformations occurred in subsequent hidden layers. The second hidden layer h(2) is represented 
by Equation (9), again using the ReLU function. However, the outputs from the first hidden layer are processed 
with a new set of weights W (2) and biases b(2). The third hidden layer followed a similar pattern, as detailed 
in Equation (10), processing the output of the second hidden layer using the weights W (3) and biases b(3). The 
network output Ypred, which predicts CO2 emissions, was calculated using Equation (11). This output is the 
result of processing the activation of the third hidden layer using the final set of weights W (4) and biases b(4). 
Each step relies on weights W (i) and biases b(i) for each layer, driving forward the network’s ability to learn and 
make accurate predictions based on input data.

Optimized parameters
Our deep learning model underwent extensive fine-tuning using various hyperparameters to ensure reliable 
and consistent CO2 emissions forecasts. After evaluating the multiple configurations, we identified the optimal 
settings for the proposed architecture. The selected design employs ReLU activation for non-linearity and consists 
of three hidden layers striking an effective balance between efficiency and complexity. The Mean Squared Error 
(MSE) loss function aligns well with our regression objectives, whereas the Adam optimizer enhances training 
efficiency.

In order to mitigate overfitting, the model was trained for 100 epochs with a batch size of 8, using a 5-fold 
cross-validation approach to ensure effective learning from the data. These carefully selected hyperparameters 
significantly improved the robustness and accuracy of the model in predicting CO2 emissions. Table 4 
provides a comprehensive overview of the strategies employed to optimize performance, detailing the various 
hyperparameters involved in the model optimization process.

Explainable AI interpretation
explainable AI (XAI) methods are designed to enhance the interpretability of models and provide insights into 
the elements that influence predictions. In this study, we employed robust XAI techniques, specifically SHapley 
Additive exPlanations (SHAP), to gain insight into the impact of features on CO2 emission projections. We used 
a series of visualizations, including SHAP Summary, waterfall, force, and dependence plots.

SHAP (SHapley Additive exPlanations)
The SHAP values offer a robust framework for explaining individual predictions by quantifying the contribution 
of each the ith feature to the output of the model. The SHAP value for feature is calculated using the following 
equation:

 
SHAPi = ϕ0(f) +

M∑
j=1

(M − j)! · j!
M ! (ϕj(f) − ϕj−1(f)) (12)

where; SHAPi represents the SHAP value for the ith feature, ϕ0(f) denotes the baseline contribution of the 
model output, f  is the proposed CarbonMLP model that maps the input features to the predicted CO2 emissions, 
M  is the total number of features.

To calculate the contribution of the features, the SHAP method considers all possible combinations of feature 
values and their respective outputs, providing a fair distribution of the model’s prediction among the input 
features. This means that each feature’s contribution is evaluated in the context of all other features, ensuring 
that the interactions are properly accounted for. The features used in this study and their descriptions are listed 
in Table 2. These include attributes such as make (vehicle manufacturer), Model, Vehicle Class, Engine Size, 
Cylinders, and Fuel Type, as well as various measures of fuel consumption (city, highway, combined), which are 
essential to understanding how vehicle characteristics affect CO2 emissions. The SHAP value explains the impact 
of each feature on model output predictions. SHAP values not only quantify the contributions of individual 
features but also allow for a deeper understanding of how vehicle characteristics influence CO2 emission 

Hyperparameter Value

Number of Hidden Layers 3

Neurons per Hidden Layer 128, 64, 32

Activation Function ReLU (Hidden Layer) Linear (Output Layer)

Optimizer Adam

Loss Function Mean Squared Error

Epochs 100

Batch Size 8

Validation Split 5-Fold

Table 4. Optimized hyperparameters of the proposed CarbonMLP model.

 

Scientific Reports |         (2025) 15:3655 12| https://doi.org/10.1038/s41598-025-87233-y

www.nature.com/scientificreports/

Content courtesy of Springer Nature, terms of use apply. Rights reserved



predictions. This methodology enhances model transparency and aids stakeholders in making informed 
decisions based on analysis.

SHAP summary plot
The SHAP summary plot provides a global view of the importance of the mean absolute SHAP value of each 
feature. This helps with model interpretation and validation by enabling the identification of important predictors 
and their particular effects on model predictions. In Equation (13), Where N  represents the number of features. 
The plot was calculated as follows:

 
SHAP Summary Plot =

N∑
i=1

|SHAPi| (13)

SHAP waterfall plot
The SHAP waterfall plot shows how each feature contributes to the variation in the base value, providing 
detailed insights into individual predictions. This makes it easier to interpret certain forecasts by emphasizing 
the variables that influence model outputs and possible areas for development. In Equation (14), is calculated 
as follows:

 
SHAP Waterfall plot = Base Value +

N∑
i=1

SHAPi (14)

SHAP force plot
The SHAP force plot illustrates how each characteristic affects a single prediction, and shows how the model 
determines the output for a given instance. This allows feature impacts to be examined, highlighting how each 
contributes to the final prediction and improves model transparency. In Equation (15), is calculated for the force 
plot as:

 
SHAP Force plot = Base Value +

N∑
i=1

SHAPi (15)

SHAP dependence plot
The SHAP dependence plot considers the relationships with other variables and shows the relationship between 
a feature and the model output forecast. It provides important insights into the feature behavior and model 
performance by assisting in the discovery of complex patterns and nonlinear relationships. The plot was 
calculated using Equation (16):

 
OutputP rediction = f(x) +

N∑
i=1

SHAPi (16)

Evaluation metrics
Evaluation metrics are crucial for evaluating the effectiveness and performance of predictive models in practical 
applications. This component contained the metrics used to assess the performance of the proposed model. The 
metrics included the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (R2), and Mean 
Absolute Percentage Error (MAPE).

Mean Squared Error (MSE)
The efficacy of the model was assessed using Mean Squared Error (MSE), which measures the average squared 
difference between the predicted and observed results. This calculation is expressed by the following equation:

 
MSE = 1

n

n∑
i=1

(yi − ŷi)2 (17)

where, n are the number of samples, yi represents the target value, and ŷi denotes the target value, respectively.

Root Mean Squared Error (RMSE)
The square root of the Mean Squared Error (MSE), also known as the Root Mean Square Error (RMSE), is the 
mean difference between the observed and predicted outcomes. The RMSE was calculated as follows :

 

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (18)
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R-squared (R2 )
The R-squared (R2) statistic illustrates the extent to which the independent variables account for the variance 
in the dependent variable. On the scale, which goes from zero to one, higher numbers denote a better model fit.
The R2 formula is as follows:

 
R2 = 1 −

∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2  (19)

where, ȳ represents the mean of the observed values.

Mean Absolute Percentage Error (MAPE)
The average percentage variation between the actual and anticipated values is measured by the Mean Absolute 
Percentage Error (MAPE), which sheds light on the accuracy of the predictions of the magnitude of the actual 
value. It is calculated as:

 
MAPE = 1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100% (20)

where, yi denotes the actual value, ŷi the predicted target value of the ith sample, n the number of samples.

Experimental results
Hardware setup and model training
The proposed deep learning model was trained using a powerful GPU P100 accelerator in a Kaggle notebook 
environment to enhance the processing efficiency. This platform offers a scalable solution for computationally 
intensive tasks, including deep neural network training. The Keras API was employed for the model training.

Batches of pre-processed data were fed through the model during training, and the Adam optimizer was 
used to minimize the Mean Squared Error (MSE) loss function. After fine-tuning various hyperparameters, 
the optimal values were selected: a batch size of 8 and training for 100 epochs with 5-fold cross-validation to 
ensure robust generalization and avoid overfitting. This carefully designed training procedure allows the model 
to effectively capture the intricate relationships between vehicle attributes and CO2 emissions, resulting in highly 
reliable prediction capabilities. The complexity of the model over time, as measured by the number of trainable 
parameters, is shown in Figure 9.

As the training progressed, Figure 9 shows a significant initial drop in the number of trainable parameters 
within the first two epochs, followed by stabilization across subsequent epochs. This indicates that the model was 

Fig. 9. Model complexity over time of CarbonMLP model.
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quickly adjusted to optimally represent the relationships between vehicle attributes and CO2 emissions, without 
over-complicating the structure.

This gradual reduction in model complexity helps to avoid overfitting, demonstrating that the model 
learns efficiently from the data without increasing unnecessary parameters. The modest increase in trainable 
parameters in the first few epochs reflects the model’s capability to represent intricate patterns, after which it 
stabilizes, reinforcing the robustness of the model.

Computational efficiency comparison
To further justify our selection of the proposed CarbonMLP model, we conducted a detailed computational 
efficiency comparison with more complex LSTM57and BiLSTM58 models. The comparison was based on major 
performance measures, such as training time, inference time, memory usage, parameter count, and latency. We 
chose LSTM and BiLSTM models because they are widely used for time-series prediction as well as sequence 
modeling tasks like CO2 emissions, making their computational effectiveness benchmark suitable for comparing 
with the current deep learning models. These measures are calculated under equal conditions to ensure fairness. 
The results of this comparison are presented in Table 5.

Training and inference time
Compared to LSTM and BiLSTM, the proposed CarbonMLP model significantly reduces the training and 
inference times. These reductions make CarbonMLP better suited for real-time and large-scale deployment. 
CarbonMLP requires 54.7% less time for training than LSTM and 43.5% less time than BiLSTM. Similarly, the 
inference time for CarbonMLP was 34.8% shorter than LSTM and 25% shorter than BiLSTM, indicating its 
computational efficiency in production environments.

Memory usage and model size
Memory usage and model size are critical in contexts with limited computational resources. CarbonMLP had a 
significantly reduced footprint in both measurements. CarbonMLP consumes 3% less memory than LSTM and 
BiLSTM. Additionally, the model size of CarbonMLP was 76.6% smaller than that of LSTM and 88.7% smaller 
than that of BiLSTM, making it highly efficient for deployment in devices with limited storage capacity.

Latency and batch processing time
Latency and batch processing times are crucial for models to make quick predictions. CarbonMLP outperforms 
LSTM and BiLSTM in these areas. The proposed CarbonMLP offers a 61.5% reduction in latency compared 
with LSTM and a 31.8% reduction compared with BiLSTM. Similarly, its batch processing time is 19% faster 
than that of LSTM and 15% faster than that of BiLSTM, further demonstrating its efficiency in high-throughput 
environments.

Model complexity and number of parameters
A model with fewer parameters is easier to train, deploy, and maintain, particularly in cases with limited 
computational power. CarbonMLP was developed to be lightweight while still providing a competitive 
performance. CarbonMLP contained 76.8% fewer parameters than the LSTM model and 88.8% fewer 
parameters than the BiLSTM model, making it highly efficient in terms of model complexity without sacrificing 
performance.

Performance evaluation
Finally, the predictive performance of the models was evaluated based on the Mean Squared Error (MSE), with 
the proposed CarbonMLP outperforming both the LSTM and BiLSTM models in this metric. The proposed 
CarbonMLP outperformed both the LSTM and BiLSTM models in terms of prediction accuracy, as evidenced 
by its reduced MSE value. This demonstrates the usefulness of the model, despite its relatively simplistic 
development.

The computational efficiency comparison establishes that the proposed CarbonMLP model is highly efficient 
in terms of training and inference time, memory utilization, latency, and model size, while still providing 
competitive predictive performance. The capabilities of CarbonMLP make it the best choice for real-world CO2 
emission prediction tasks, particularly in contexts with limited computational resources.

Metric Proposed MLP Model LSTM Model BiLSTM Model

Training Time (seconds) 1.96 4.33 3.47

Inference Time (seconds) 0.15 0.23 0.20

Memory Usage (MiB) 137.15 141.39 141.39

Latency (seconds) 0.15 0.39 0.22

Batch Processing Time (seconds) 0.17 0.21 0.20

Mean Squared Error (MSE) 0.0002 0.0003 0.0004

Model Size (MB) 3.25 13.90 28.76

Number of Parameters 281,601 1,212,321 2,506,561

Table 5. Computational efficiency and performance comparison.
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Performance evaluation of the proposed model
The proposed deep learning model can fully represent the complex relationships between CO2 emissions and 
vehicle attributes. After conducting 5-fold cross-validation, excellent performance metrics were obtained. The 
average R-squared value was 0.9938, demonstrating a 99.4% explained variation, with an extremely low Mean 
Squared Error (MSE) of 0.0002 and a Root Mean Squared Error (RMSE) of 0.0142. Additionally, the model’s 
Mean Absolute Percentage Error (MAPE) was 2.5%, indicating that the predictions were, on average, within 
2.6% of the actual values.

These metrics are summarized in the performance curve shown in Figure 13, where R-squared, MSE, RMSE, 
and MAPE are depicted, providing a holistic view of the model’s predictive accuracy and its ability to generalize 
across all cross-validation folds.

The results are further supported by the training and validation loss curves shown in Figure 10, which display 
the loss trends for each of the five folds. The consistency across these curves highlights the ability of the model to 
generalize across validation sets without overfitting. Figure 11 presents a summary of these loss curves, further 
demonstrating that both training and validation losses decreased steadily throughout the training process.

Moreover, the accuracy of the model was confirmed by the actual versus predicted plot in Figure 12, where 
the data points were closely clustered around the diagonal line, reinforcing the high correlation between the 
predicted and actual CO2 emissions. While an isolated outlier with a significantly lower actual value compared 
to its prediction was observed, this may be attributed to data anomalies, underrepresented patterns, or the 
model’s limitations in capturing edge cases. Importantly, the predicted values were restored to their original 
scale after normalization, ensuring that the performance metrics accurately reflected the true CO2 emissions. 
These compelling performance indicators, combined with insightful visualizations, underscore the robustness of 
the model and its potential for practical applications in CO2 emission prediction tasks.

To entirely evaluate the “CarbonMLP” model’s effectiveness in estimating CO2 emissions, we used a Taylor 
diagram, as shown in Figure 14. This useful picture summarizes three critical metrics: correlation coefficient (R), 
standard deviation (SD), and centered root mean square difference (RMSD). R denotes the linear relationship 
between the expected and observed emissions, with a value of one indicating complete agreement. The correlation 
coefficient (R) was calculated as follows:

 
R =

∑n

i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
 (21)

where, xi and yi represent the individually predicted and observed values, respectively. x and y denote the 
respective means.

The radial distance from the origin should be close to the observed standard deviation (SD) is calculated as 
follows:

 

SD =

√√√√ 1
n

n∑
i=1

(xi − x)2 (22)

Finally, the smaller angle between the data point and the reference point for the centered root mean square 
difference (RMSD) reflects a good alignment of cyclical patterns in emissions. The centered RMSD was calculated 
as follows:

 

RMSD =

√√√√ 1
n

n∑
i=1

(xi − yi)2 (23)

We can acquire significant information by analyzing the exact location of our “CarbonMLP” model’s data point 
on the Taylor diagram in Figure 14. Ideally, the data point should be close to the circle displaying a correlation 
coefficient of one, suggesting a high level of agreement between the predictions and observations. Furthermore, 
the radial distance from the origin should be similar to the reported standard deviation, indicating that the 
model adequately captured the variability. Finally, a lower angle between the data point and the reference point 
for the centered RMSD indicates good synchronization of cyclical patterns in emissions. By examining these 
characteristics of the Taylor diagram, we may accurately assess the “CarbonMLP” model’s ability to estimate CO2 
emissions from automobiles.

Comparison of model performance with existing approaches
In predicting CO2 emissions, our proposed deep learning model outperformed complex deep learning 
architectures and traditional machine learning algorithms. As the metrics of performance shown in Table 6, 
the proposed model has the highest R-squared value of 0.9938 and the lowest MSE value of, 0.0002 signifying 
the high accuracy of the model and the higher correlation of the predicted values with the observed actual CO2 
emissions.
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In the machine learning module, various algorithms such as Decision Trees, K-Nearest Neighbors (KNN), 
Support Vector Machines (SVM), and XGBoost were applied to compare their performance. These algorithms 
played different roles in the analysis59. Decision Trees are simple, interpretable models that can handle both the 
linear and non-linear relationships between vehicle attributes and CO2 emissions. They segment the data into 
smaller, more manageable chunks, allowing for an intuitive understanding of which features lead to different 
levels of emissions. However, they may lack the flexibility to capture complex patterns in the data when used alone. 
K-Nearest Neighbors (KNN) regressor works by measuring the proximity of data points in the feature space. 

Fig. 10. Training and validation loss curves for each of the five folds during 5-fold cross-validation. Each 
subplot shows the trend of the loss function across epochs for both the training and validation datasets, 
demonstrating consistent convergence and the model’s generalization ability across the different folds. The loss 
curves show a steady decrease, indicating effective training and no significant overfitting.
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It is useful in scenarios where the relationship between features is non-linear. However, KNN’s performance 
can degrade when faced with high-dimensional data or large datasets, as seen by its relatively higher MSE and 
lower R-squared in Table 6. The Support Vector Machine (SVM) regressor aims to find a hyperplane that best 
fits the data points, minimizing the prediction error. While effective in some cases, SVM struggled to handle 
the intricacies of the CO2 emission data in this study, resulting in higher errors compared to the deep learning 
approaches. XGBoost, a highly efficient gradient boosting algorithm, is well-suited for complex, non-linear 
problems. It showed relatively strong performance but still fell short of the proposed deep learning model due to 
its inability to capture deeper patterns in the data without overfitting.

These models were also combined in an ensemble approach, integrating the strengths of Decision Trees, KNN, 
and XGBoost to improve the generalization and accuracy. By leveraging the diversity of predictions from these 
models, the ensemble achieved a lower MSE (0.0003) and higher R-squared (0.9889) than individual machine 

Fig. 12. Actual vs predicted plot of CarbonMLP model.

 

Fig. 11. Average training and validation loss curve of CarbonMLP model.
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Fig. 14. Taylor diagram for “CarbonMLP” model performance.

 

Fig. 13. CarbonMLP model’s performance curve.
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learning algorithms, although it still did not outperform the proposed deep learning model. The outcomes show 
that even though such basic techniques, such as Decision Trees or KNN, provide satisfactory predictions, they 
are not able to embrace the non-linearity of the factors inside the CO2 emission.

The superiority of these models in sequential data processing was considered when using the LSTM and 
BiLSTM models in our deep learning module. By their nature, LSTM models cover distances in the sequence 
and implement memory over long intervals, making them suitable for time-series forecasting. This is important 
for establishing a relationship between vehicle characteristics and CO2 emissions over time. BiLSTM improves 
the above in the sense that word sequences are analyzed in forward and backward ways, capturing contexts 
in past and future data points. This split view is most helpful in emissions predictions, where the coefficients 
may be a function of prior and subsequent values. LSTM and BiLSTM are used because they are among the 
best algorithms that work for sequential data, and sequential data is which are required for prediction tasks. 
The emission data obtained always have temporal characteristics related to things, such as the specifications 
of the automobile and changes in legislation. These dynamics can be captured using these models and hence 
provide better forecasts of CO2 emissions. It is also important for a predictive model to be built with data pattern 
changeability so that it can adapt to current data patterns. This is evident in the proposed CarbonMLP model 
where the deep learning approach efficiently captures these complex interactions and is therefore the best 
approach towards achieving highly precise CO2 emission prediction in real environments.

XAI interpretation using SHAP
We employed the (SHAP) values to acquire a better understanding of the underlying mechanics of the advanced 
deep learning model and how different features influence its predictions. This model-agnostic technique allows 
us to understand how each variable affects the model’s CO2 emission forecasts. With an impressively low 
Mean Squared Error (MSE) of 0.0002 and a high R-squared value of 0.9938, our proposed model performed 
well, establishing it as the best option for SHAP explanation. Analyzing the SHAP values associated with each 
prediction allowed us to determine which features had the greatest positive or negative impact on the model’s 
CO2 emission predictions.

SHAP summary plot: Global feature importance for CO2 emission prediction
The SHAP summary plot in Figure 15 provides a comprehensive view of how different features affect the CO2 
emissions predictions across the entire dataset. The features were ranked by their importance, and the plot 
shows the distribution of their impact on the model’s output. The key elements of the SHAP summary plot are 
as follows:

• Feature Importance (Y-axis): The features are ordered by importance, with the most impactful features listed 
at the top. The top three features in this plot are Fuel Consumption City (L/100 km), Fuel Consumption Comb 
(L/100 km), and Fuel Consumption Hwy (L/100 km), indicating that fuel consumption metrics are critical 
predictors of CO2 emissions.

• SHAP Value (X-axis): SHAP values represent the contribution of each feature to the prediction. Positive 
SHAP values increased the predicted CO2 emissions, whereas negative SHAP values decreased it. A SHAP 
value of 0 indicates no impact on the prediction for that instance.

• Color Gradient (Feature Value): The colors represent feature values, with blue indicating low values and red 
indicating high values. For example, low fuel consumption values (blue) tend to decrease CO2 predictions, 
whereas high fuel consumption values (red) increase the predictions.

• Distribution of Impact: The spread of points for each feature indicates how much variation exists in its im-
pact. Features such as Fuel Type_X and Cylinders_6 show a wide distribution of SHAP values, indicating that 
their impact can vary significantly depending on the vehicle configuration.

The summary plot reveals that the fuel consumption metrics, engine size, number of cylinders, fuel type, and 
vehicle class are among the most important predictors of CO2 emissions. Features such as Fuel Consumption 
City and Fuel Consumption Comb have a consistent positive relationship with CO2 emissions-vehicles with 
higher fuel consumption produce more CO2. Additionally, the impact of certain features, such as Fuel Type_X 

Model MSE RMSE R-squared MAPE

BiLSTM 0.0004 0.0199 0.9878 3.24%

LSTM 0.0003 0.0195 0.9883 3.30%

Decision tree regressor 0.0005 0.0234 0.9827 5.69%

K neighbour regressor 0.0006 0.0256 0.9794 5.18%

SVR 0.0026 0.0514 0.9172 11.46%

XGB regressor 0.0007 0.0280 0.9753 5.07%

Adaboost regressor 0.0015 0.0394 0.9513 8.10%

Catboost Regressor 0.0025 0.0503 0.9207 10.89%

Ensemble (decision tree, knn, xgb) 0.0003 0.0187 0.9889 3.19%

Proposed (CarbonMLP) 0.0002 0.0142 0.9938 2.59%

Table 6. Performance comparison among all models.
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and Transmission_AS6, varies depending on the vehicle configuration, highlighting the importance of feature 
interactions in the model’s predictions.

SHAP waterfall plot: Instance-Level explanation for CO2 emission prediction
To explain the contribution of each feature to the prediction of a specific vehicle (index 0), we used SHAP to 
generate a waterfall plot, as shown in Figure 16. The SHAP waterfall plot provides an instance-level explanation 
of how different features contribute to the final CO2 emission prediction for a specific data point. The key 
elements in the SHAP waterfall plot are as follows:

• Baseline Value E[f(x)] = 0.506: The expected value of the prediction, which is the mean CO2 emission 
prediction across all instances in the dataset. This baseline served as the starting point of the plot.

• Model Output f(x) = 0.543: The final predicted value for this particular instance (vehicle), after account-
ing for the contributions of all features. This represents the CO2 emission prediction for the 0th index in the 
dataset.

• Feature Contributions: Each horizontal bar represents the contribution of a feature to the final prediction. 
Features that increase the predicted value are shown in red (positive contributions), whereas features that de-

Fig. 15. SHAP Summary Plot: Visualization of feature importance, with Fuel Consumption Combined (L/100 
km) as the highest ranking feature. Red represents a greater impact on CO2 emissions, and blue represents a 
lower impact.
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crease the prediction are shown in blue (negative contributions). For example, Fuel Type_X contributes +0.02 
to the final prediction, slightly increasing the CO2 emission prediction. On the other hand, Cylinder_6 has a 
negative contribution (−0.01), reducing the prediction.

• Cumulative Impact: The contributions from all features were accumulated, starting from the baseline 
E[f(x)] = 0.506, and the final prediction was reached at f(x) = 0.543. This small contribution of each 
feature adds to shifting the prediction from the baseline value to the final result.

• Many Small Contributions: The plot shows that a large number of smaller features (grouped as “2099 other 
features”) have a combined contribution of +0.02, which also affects the prediction. These grouped features 
individually have small impacts but collectively influence the final output.

The SHAP waterfall plot visually demonstrates the effect of each feature on prediction. Features such as Fuel Type_X 
and Fuel Consumption Comb push the prediction upward, while features such as Fuel Type_Z and Cylinders_6 
have a negative impact. The cumulative effect of all these feature contributions led to a final prediction of 0.543 
from the baseline value of 0.506. By visualizing the individual feature contributions, the SHAP waterfall plot 
provides an interpretable and transparent view of how the model arrives at specific CO2 emission predictions. 
This transparency aids in understanding the features that significantly influence the prediction of each vehicle.

Fig. 16. SHAP Waterfall Plot: Detailed analysis showing the relative contributions of each characteristic to 
variations from the base value. Highlights the significant impact of fuel consumption in the city, combined fuel 
consumption, and highway fuel consumption on the model’s CO2 emissions prediction.
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SHAP force plot: Instance-Level explanation for CO2 emission prediction
The SHAP Force Plot in Figure 17 provides a detailed explanation of the individual predictions made by the 
model for the 0th index in the dataset. It visualizes the contributions of each feature, demonstrating whether they 
push the prediction higher or lower than the baseline.

• Baseline Value E[f(x)]: The baseline value, representing the expected value of the model’s output without 
any feature information, is E[f(x)] = 0.50. This is the mean prediction of CO2 emissions across all instances.

• Model Output f(x) = 0.543: The final predicted value for the 0th index is f(x) = 0.543, which is slightly 
higher than the baseline, indicating a higher predicted CO2 emission for this instance.

• Positive Contributions (Red): Features such as Fuel Consumption City (L/100 km) and Fuel Type_E sig-
nificantly increased the prediction, contributing positively to the final output. These are represented by red 
sections on the left side of the plot.

• Negative Contributions (Blue): Features such as Fuel Type_Z and Cylinders_6 decrease the prediction, pull-
ing it lower than it would otherwise. These are represented by the blue sections on the right hand side of the 
plot.

• Cumulative Impact: The plot illustrates the transition from the baseline value to the final predicted value by 
balancing the positive and negative contributions. The overall effect of these features led to a final predicted 
value of 0.543, as shown on the right end of the force plot.

This visualization provides an intuitive understanding of the model’s decision-making process, highlighting how 
various features interact to produce the final prediction.

SHAP dependence plots: Analysis of feature impact on CO2 emissions
The SHAP dependence plots in Figure 18 provide a detailed visualization of how specific features affect predicted 
CO2 emissions and how they interact with other variables in the model.

• Engine Size: The dependency plot in Figure 18a demonstrates a positive relationship between engine size and 
CO2 emissions, suggesting that larger engines contribute to higher emissions. However, the narrower range of 
SHAP values compared to other features indicates that engine size has a relatively lower impact on CO2 emis-
sions. This aligns with the nature of the data, where fuel consumption metrics (City, Combined, and Highway) 
are more directly tied to emissions, making them more influential predictors in the model.

• Fuel Consumption (City): The dependency plot in Figure 18b reveals that fuel consumption under city driv-
ing conditions is strongly correlated with CO2 emissions. Higher fuel consumption in urban environments 
leads to increased CO2 predictions, making city fuel efficiency an important target for emission reduction 
strategies.

• Fuel Consumption (Combined): The combined fuel consumption dependence plot in Figure 18c shows a 
similar trend, where increased overall fuel consumption results in higher CO2 emissions. This emphasizes the 
importance of improving fuel efficiency across different driving conditions to reduce environmental impact.

• Fuel Consumption (Highway): The highway fuel consumption plot in Figure 18d also demonstrates a posi-
tive relationship with CO2 emissions. While highway driving is generally more fuel-efficient than city driving, 
fuel consumption in this condition still contributes significantly to emissions, highlighting the role of efficien-
cy improvements in reducing emissions.

Overall, the SHAP dependence plots provide a comprehensive and insightful analysis of how engine size and 
fuel consumption metrics, specifically in city, combined, and highway driving conditions, play significant roles 
in predicting vehicle CO2 emissions. The lower variation and smaller magnitude of SHAP values for Engine 
Size suggest that it has a weaker effect on the target variable when compared to the Fuel Consumption features. 
While fuel consumption metrics exhibit a wider range of SHAP values, underscoring their dominant influence 
on the model’s predictions, the smaller range observed for engine size indicates its relatively lower importance 
in comparison. This distinction highlights that fuel efficiency improvements, particularly in urban and 
combined driving conditions, are critical drivers for reducing CO2 emissions. Nonetheless, engine size remains 
a contributing factor that cannot be entirely overlooked.

These findings highlight the potential for substantial reduction in CO2 emissions through targeted 
improvements in vehicle design and fuel efficiency. By focusing on developing engines with smaller displacements, 
optimizing fuel consumption across different driving conditions, and employing advanced technologies to 

Fig. 17. SHAP Force Plot: In-depth analysis of individual predictions illustrating how each feature affects the 
model’s output. Emphasizes the notable impact of city fuel consumption, combined fuel usage, and highway 
fuel consumption on CO2 emissions predictions.
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enhance efficiency, manufacturers can make significant strides toward minimizing emissions. This not only aids 
in complying with environmental regulations but also supports the broader goal of mitigating climate change 
and achieving a sustainable future. Ultimately, SHAP analysis provides actionable insights that can inform both 
policymakers and automotive engineers, encouraging the adoption of strategies that prioritize energy efficiency 
and emission reduction in the transportation sector. This will lead to the development of greener vehicles and 
cleaner environments, contributing meaningfully to global efforts to combat climate change.

Comparison with previous work
This analysis expands on the findings of the literature review by comparing the proposed Custom Deep Learning 
Model with existing models for estimating CO2 emissions. As shown in Table  7, many studies cited in the 
literature review used models such as BilSTM and XGBoost for this task.

Our proposed method outperforms existing methods for predicting CO2 emissions. It had the lowest Mean 
Squared Error (MSE) and Root Mean Squared Error (RMSE) of the models in the table, implying a better fit 
between the anticipated and actual CO2 emission data. Furthermore, the proposed model had a high R-squared 
value, indicating a significant connection between the predictions and actual data. While admitting potential 
constraints resulting from differences in the datasets and assessment measures used in previous studies, the 
proposed approach outperformed these important parameters. Furthermore, it has SHAP values that improve 
its interpretability. Using SHAP values, we obtained insights into how different features influence the model’s 
predictions, improving its overall transparency and dependability. In conclusion, the high performance and 
interpretability of our custom deep learning model make it an effective tool for predicting CO2 emissions.

Discussion
The proposed deep learning model outperformed existing carbon dioxide (CO2) emission prediction models 
with a low Mean Squared Error (MSE) of 0.0002, Root Mean Squared Error (RMSE) of 0.0142, and high 
R-squared value of 0.9938. These indicators show a better match between the model predictions and actual 

Fig. 18. SHAP Dependence Plots for various features: (a) Engine Size, (b) Fuel Consumption (City), (c) Fuel 
Consumption (Combined), and (d) Fuel Consumption (Highway).
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CO2 emissions, indicating a significant correlation with the real-world data. While highlighting the possible 
limitations derived from the differences in previous research approaches, the model’s clear outperformance 
establishes it as a powerful tool for precise CO2 emission prediction. Our key contribution is the development 
of a model that not only predicts CO2 emissions but also provides interpretability by utilizing SHAP values. This 
transparency helps us to better understand which elements, such as vehicle characteristics, fuel consumption, 
and engine size, have the greatest impact on CO2 emissions. By identifying these main factors, the model can 
inform vehicle-related CO2 emissions reduction plans. For example, insights gained from the interpretability 
features of the model can be used to target efforts aimed at improving engine performance, promoting fuel-
efficient vehicles, and encouraging environmentally responsible driving practices. This study improves CO2 
emission forecasts and provides useful information to environmental authorities, regulators, and the automobile 
sector. These stakeholders can use the model’s capabilities to create and implement successful plans to reduce 
CO2 emissions from automobiles, thus paving the way for a more maintainable environment.

Conclusion and future work
This study explored the efficacy of a deep learning model for predicting carbon dioxide (CO2) emissions from 
vehicles. The proposed model demonstrated outstanding performance, outperforming the previous techniques 
in terms of accuracy and interpretability. In summary, this study developed a deep learning model with 
eXplainable AI (XAI) integration to estimate CO2 emissions from vehicles using a Multilayer Perceptron (MLP) 
architecture. The model was trained using a dataset consisting of 7,385 rows and 12 columns, which included 
vehicle characteristics such as Make, Model, Vehicle Class, Engine Size (L), Cylinders, Transmission, Fuel Type, 
Fuel Consumption ratings (City, Highway, and Combined), and CO2 emissions (g/km). The model was extremely 
successful, as evidenced by a high R-squared value of 0.9938 and low Mean Squared Error (MSE) of 0.0002. 
Further studies using assessment metrics and visualizations validated the capacity of the model to represent the 
complex links between vehicle features and CO2 emissions. Additionally, SHapley Additive exPlanations (SHAP) 
values were applied to obtain the influence of different features on the model’s CO2 emission predictions of the 
model. Despite these optimistic findings, this study has some limitations that require further investigation. The 
proposed model’s performance was influenced by the dataset used. If trained using data from a specific region 
or vehicle type, its applicability to different populations or geographical locations may be limited. Furthermore, 
this study’s emphasis on CO2 emissions, although important, addresses only one aspect of the environmental 
challenge. Including other pollutants, such as nitrogen oxides (NOx) and particulate matter (PM), would provide 
a more complete view of the environmental impact of a vehicle. In addition, the model analysis was constrained 
to the features found in the training data. A more in-depth look at the external elements that may influence CO2 
emissions, such as driving behavior, weather conditions, and road infrastructure, could provide useful insights 
for future model modifications.

Future endeavors can build on this study and explore new avenues for creating a more sustainable 
environment. Expanding the dataset to cover a broader and more diverse range of geographical regions would 
improve the model’s generalizability. Incorporating more contaminants into the analysis of CO2 emissions would 
provide a more comprehensive understanding of the environmental impact of vehicles. Exploring sophisticated 
interpretability techniques may yield further insights into the decision-making process of the model. However, 
the most significant future advancements will involve real-world applications. Consider vehicles outfitted with 
sensors that measure CO2 emissions based on the same parameters that the model identifies as important. These 
real-time data can be fed back into the model to drive continual improvement and inform drivers of eco-driving 
advice. Our journey toward a sustainable environment goes beyond the conceptual framework. Future studies 
should consider incorporating additional variables, such as driving habits, road conditions, and environmental 
factors. Real-time monitoring systems and vehicle sensor data are essential for improving pollution forecasts. 
Moreover, investigating sophisticated deep learning architectures and ensemble approaches may enhance the 
prediction capabilities of the model. By taking these steps, we can capitalize on the power of this science to 
create a cleaner and more sustainable future for our planet. This study lays the groundwork for more precise 

Author Model Used MSE RMSE R-Squared MAPE Percentage XAI USE (SHAP)

Al-Nefaie et al. 2023 BiLSTM 0.001177 0.0343 0.9378 - ×
Ma̧dziel et al. 2023 Gradient-Boosting 0.7780 0.877 0.6126 - ✓ (SHAP)

Ziółkowski et al. 2021 MLP - 1.0598 0.9861 5.06% to 10.88% ×
Pandey et al. 2023 GB - 0.0604 0.8468 - ✓(SHAP)

Tena-Gago et al. 2023 UWS-LSTM 0.0261 0.1616 0.975 - ×
Çınarer et al. 2024 XGBoost 0.0011 0.0333 0.9886 5.76% ×
Wen et al. 2021 GBR - 0.95 0.99 - ×
Wei et al. 2021 CatBoost - 0.039 0.83 - ×
Ullah et al. 2023 LightGBM - 16.34 0.9800 - ×
Hien et al. 2022 Univariate Polynomial Regression - 1.287 0.986 - ×
Li et al. 2023 Ensemble Model - 2.01 0.88 - ×
Proposed Method CarbonMLP 0.0002 0.0142 0.9938 2.59% ✓(SHAP)

Table 7. Comparison with previous work.
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and understandable CO2 emissions forecasting models for vehicles. This knowledge will enable public officials, 
automobile manufacturers, and drivers to develop a more sustainable future for transportation by resolving 
restrictions and exploring new opportunities. The proposed approach, which combines advanced modeling with 
interpretability, makes a substantial contribution to establishing sustainable transportation systems, protecting 
the environment, and reducing vehicle emissions.

Data availability
The dataset used in this study is publicly available on Kaggle:  h t t p s :  / / k a g g  l e . c o m  / d a t a  s e t s / d e b a j y o t i p o d d e r / c o 2 - e 
m i s s i o n - b y - v e h i c l e s     . It provides comprehensive vehicle information, including the make, model, engine details, 
transmission type, fuel consumption rates, and CO2 emissions. The data has been taken and compiled from the 
Canadian government’s official open data website, which can be accessed at:  h t t p s :  / / o p e n  . c a n a d  a . c a /  d a t a / e n / d a t 
a s e t / 9 8 f 1 a 1 2 9 - f 6 2 8 - 4 c e 4 - b 2 4 d - 6 f 1 6 b f 2 4 d d 6 4     . Researchers interested in utilizing this dataset for further analysis 
can refer to the official source for the latest data.
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