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Abstract: Burning fossil fuels results in emissions of carbon dioxide (CO2), which significantly
contributes to atmospheric changes and climate disturbances. Consequently, people are becoming
concerned about the state of the environment, and governments are required to produce precise
projections to develop efficient preventive measures. This study makes a significant contribution
to the area by modeling and predicting the CO2 emissions of vehicles using advanced artificial
intelligence. The model was constructed using the CO2 emission by vehicles dataset from Kaggle,
which includes different parameters, namely, vehicle class, engine size (L), cylinder transmission,
fuel type, fuel consumption city (L/100 km), fuel consumption hwy (L/100 km), fuel consumption
comb (L/100 km), fuel consumption comb (mpg), and CO2 emissions (g/km). To forecast the CO2

emissions produced by vehicles, a deep learning long short-term memory network (LSTM) model
and a bidirectional LSTM (BiLSTM) model were developed. Both models are efficient. Throughout
the course of the investigation, the researchers employed four statistical assessment metrics: the
mean square error (MSE), the root MSE (RMSE), Pearson’s correlation coefficient (R%), and the
determination coefficient (R2). Based on the datasets of experiments carried out by Kaggle, the LSTM
and BiLSTM models were created and implemented. The data were arbitrarily split into two phases:
training, which included 80% of the total data, and testing, which comprised 20% of the total data. The
BiLSTM model performed best in terms of accuracy and achieved high prediction values for MSE and
RMSE. The BiLSTM model has the greatest attainable (R2 = 93.78). In addition, R% was used to locate
a connection between the dataset’s characteristics to ascertain which characteristics had the highest
level of association with CO2 emissions. An original strategy for the accurate forecasting of carbon
emissions was developed as a result of this work. Consequently, policymakers may use this work as
a potentially beneficial decision-support tool to create and execute successful environmental policies.

Keywords: artificial intelligence; deep learning; CO2 emissions; vehicles; environment

1. Introduction

Increasing greenhouse gas (GHG) emissions over the last several decades have sparked
rising concern about global warming. The energy [1], transportation [2,3], agricultural [4],
building [5], waste management [6], and afforestation and reforestation [7] sectors are only
some of the human-caused sources of these emissions. According to the International En-
ergy Agency [8], transportation is the second largest sector responsible for emitting GHGs.
Typically reported as carbon dioxide equivalent (CO2e), nitrogen oxide (N2O), methane
(CH4), and carbon dioxide (CO2) are the principal GHG emissions from automobiles [9].
Globally, transportation activities produce 75% of total environmental CO2 emissions [10].
Consequently, the reduction of emissions from transportation is a worldwide objective
against climate change [11]. Assessing urban highways and exposure to pollutant emissions
from motor traffic is important when considering economic, social, and environmental
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goals, especially in emerging countries [12]. Figure 1 shows how CO2 is emitted from
vehicles.

 

Figure 1. Carbon dioxide from vehicles.

Building transportation infrastructures, such as expressways and motorways, that
connect cities is essential to any expanding economy. Congestion on the nation’s highways
is a direct consequence of the rapid expansion of infrastructure built to accommodate the
development of available modes of transportation. Due to this, a discernible decline in
the quality of the air around motorways, intersections, and tollways has been observed.
Vehicle exhausts are the primary contributor to traffic emissions, such as carbon monoxide
(CO), which are a substantial factor in the overall amount of air pollution caused by these
infrastructures. Spatial prediction models are an outstanding decision-making assistance
tool because of their ability to estimate and simulate the effects of traffic emissions on
road networks [13–15]. An excessive amount of traffic may have various undesirable
impacts [16,17], including an increase in both noise and gaseous pollution. Humans
exposed to high amounts of CO2 have a significantly increased chance of contracting
various diseases and conditions [18–20], such as cancer, heart disease, respiratory problems,
and preterm deliveries.

Given the rapid development of computer technology in recent years, a significant
number of studies have focused on the use of machine learning and deep learning to
forecast exhaust emissions [21] and have used regression analysis to predict CO2 emis-
sions of light-duty diesel trucks (LDDTs); the correlation coefficient (R%) between the
regression-equation-based CO2 projections and the actual CO2 measurements was 0.93%.
Maksymilian et al. [22] collected RDE data from hybrid electric automobiles, tested the
accuracy of several machine learning models to estimate CO2 emissions, and determined
that the most effective approach is the Gaussian process regression. In addition, CO2 emis-
sions produced by hybrid electric automobiles have not always increased in proportion
to the vehicle’s rate of acceleration. In the past several years, artificial neural networks
(ANNs) have been widely applied in the literature as a method for estimating numbers
if real applications with a high degree of accuracy [23]. Hashemi and Clark [24] trained
an ANN model to effectively predict CO2 emissions from heavy-duty diesel automobiles
using the properties of axle speed, torque, and their derivatives. Jigu et al. [25] combined an
ANN model and a vehicle dynamics model to anticipate the short-term CO2 emissions of
light-duty diesel cars. The CO2 calculation is based only on these two parameters—engine
speed and torque—instead of considering the impact of actual driving conditions. In some
studies [26–28], ANN has been used to predict the pollutants released when a vehicle’s
exhaust is burned. The problem with these studies is that the models used to create fore-
casts only considered the current status of the car’s engine and the condition of the road.
Furthermore, automobile emissions have a high temporal dependence. However, even
after time alignment, time error still occurs in the measurement between the value of the
exhaust gas and the value of the engine while it operates. Given this factor, we could not
depend on these studies for prediction by simply using currently accessible information.
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Several models may be used to anticipate CO2 emissions from transportation, and the
literature [29–31] discusses the many methods that can be used.

Early traffic CO2 modeling is established based on traditional approaches that are
mostly dependent on data sampling and technologies, such as GPS. The simulation of
traffic emission distribution in a region may be achieved by combining different themed
maps and vehicle emission equations, resulting in the generation of informative maps that
can aid in making informed judgments [29]. For land-use regression analysis, recently
developed methods largely depend on statistical and soft computing algorithms [32]. These
computational and statistical approaches may use various factors pertaining to traffic and
road layout as inputs. Given that an overwhelming majority of these models are constructed
using experimental data, they are highly sensitive to alterations in traffic flow, measurement
techniques, and geographical locations [32]. These models cannot be generalized since they
depend on the local environment, which considers factors, such as the kind and make of
the vehicle and the weather [33,34]. A method that uses surveyed location information
acquired from automobiles as its data source for detecting road geometry components has
been established [35].

Long short-term memory networks (LSTMs) have been established by academics
to solve gradient disappearing and gradient clipping [36]. Because of this, they are far
better than people at estimating the amount of CO2 released by cars. Tao predicted the
instantaneous CO2 emissions of taxis using an LSTM-based vehicle emission model with
more precision than other state-of-the-art techniques [37]. Yang et al. [38] found that LSTM
performs better than other models in forecasting short-term fluctuations in NOx emissions.
Estimating CO2 emissions from light-duty diesel trucks (LDDTs) using sequence models,
on the other hand, is almost rarely encountered in the published literature.

In [39], researchers utilized a GBR model to calculate the emissions and fuel utilization
of a hypothetical high-speed vehicle. Overall, we’re happy with the outcomes. Nevertheless,
the prediction model only included information about when the internal combustion engine
vehicles (ICE) were turned on, which contradicts our findings. Hence, the authors did not
account for changes in the status of the power train that occur at HVs.

Two light-duty diesel-powered autos’ CO2 emissions were predicted using LSTM,
DNN, and CNN in a comparative study [40]. The data set was retrieved from the car’s
onboard diagnostics (OBD2) connector. Of the tested models, the LSTM model earned the
lowest RMSE score (9.30). The authors also investigated the impact of noisy data in the
input data, which may reduce the model’s accuracy by as much as 30%.

Although traditional micro and macro estimate algorithms are employed elsewhere,
Ref. [41] used a number of machine learning techniques to anticipate the CO2 emission rate
of hybrid vehicles. Compared to the other models, the Gaussian process regression (GPR)
model achieved the best accuracy at 69%. The authors conclude that there is an issue with the
current crop of emission models since they do not provide consistent outcomes. Hybrid cars’
inconsistent CO2 emissions are to blame for this issue. The results of this research provide a
significant contribution to the search for a remedy to this issue.

Emission prediction models for several vehicle pollutants may be built using PEMS, and
the authors of research [42] suggest using a parallel attention-based LSTM (or PA-LSTM). The
training time was reduced since the model’s convergence speed was increased by using the
two-layer attention spatial encoding approach. The results demonstrated that the PA-LSTM
outperformed every other ML mode, with an accuracy of 94.6% being attained.

Many ML models were used to calculate the CO2 output of a diesel-powered vehi-
cle [43]. Construction equipment chassis movement has been shown to correlate signifi-
cantly with emission rates, which the authors explored. The results indicated that RF was
the top-performing algorithm, with a 94% success rate.

LSTM models have been used to anticipate a variety of real-time applications, such
as [44], which used LSTM models to predict air pollution, and [45], which used LSTM
models to predict the performance of thermal power plants. Ref. [46] forecast carbon
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emissions, Ref. [47] forecast future exports, Ref. [48] analyze marketing data, Ref. [49]
forecast electricity load, and Ref. [50] forecast stock prices.

One of the primary contributors to the difficulties caused by pollution in the atmo-
sphere is the ever-increasing number of cars. A long- and short-term forecast of the exhaust
emission from on-road vehicles that is both timely and accurate might help prevent air
pollution, the protection of public health, and the decision-making process that govern-
ments use for environmental management. Because of the inherent unpredictability and
imbalance that comes with the nature of meteorological elements and traffic flow, the
emission of vehicle exhaust has significant non-stationary and nonlinear characteristics.
Hence, accurate long- and short-term vehicle exhaust emission prediction has a number of
obstacles, including the long- and short-term temporal dependencies and intricate nonlin-
ear connection on various emission gases, including carbon monoxide (CO). We propose a
unique hybrid deep learning framework, namely LSTM and BiLSTM models, to efficiently
forecast long- and short-term multivariate vehicle exhaust emissions. This will allow us to
overcome the hard challenges that have been presented.

The purpose of this research is to build a model using artificial intelligence technology
that is capable of predicting CO2 emissions from automobiles, with an added focus on
Saudi Arabia, which is one of the top oil-producing nations in the world. According to
the numbers that have been made public, there are now more than 12 million automobiles
on the land that comprises the Kingdom of Saudi Arabia. This number is expected to rise
to 25 million automobiles by the year 2030. The creation of such a model may contribute
to the protection of the environment and the limitation of the spread of CO2. The main
contributions of the research article are as follows:

1. In general, this effort contributes to the achievement of a few of the Sustainable
Development Goals set out by the United Nations. It is directly associated with Goal
No. 13, which is titled “climate action,” and it is also assisting in an indirect way to
attain other objectives.

2. More specifically, in this study, a highly effective deep learning long short-term
memory network (LSTM) model and a bidirectional LSTM (BiLSTM) model have
been constructed to forecast CO2 emissions from traffic cars.

3. Rough k-means clustering is proposed as a preprocessing approach to handle the
outliers in the entire dataset for improving the deep learning models.

4. These models also estimate the impact of the population of cars on CO2 production.
As a novel method, sensitivity analysis was added to the model that was constructed
in order to investigate the typical CO2 emissions produced by traffic vehicles.

5. The performance of the present model in estimating CO2 emissions was found to be
superior to that of the other available models.

2. Materials and Methods

The framework for predicting and modeling CO2 emissions from vehicle traffic is
displayed in Figure 2. The step-by-step modeling technique is presented in its entirety in
the proposed framework.

 

Figure 2. Framework of carbon dioxide emission prediction.
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2.1. Dataset

This dataset contains the official record of the CO2 emission data of various cars with
different features. This data collection accurately depicts the range of possibilities for a
vehicle’s CO2 emissions as a function of its many attributes. The information was obtained
from the Canadian government’s open data portal. We prepared the latest version for
convenience. The information provided spans 7 years. A total of 12 columns and 7385 rows
were provided. Several acronyms were utilized to shorten the list of characteristics. Table 1
shows the features of the dataset, where fload64 is consisting of both positive and negative
values separated by a decimal point and int64 is the real number.

Table 1. Features of the dataset.

#Variable Types

#Model object

#Vehicle Class Object

#Engine Size (dm3) float64

#Cylinders int64

#Transmission int64

#Fuel Type int64

#Fuel Consumption City (L/100 km) float64

#Fuel Consumption Hwy (L/100 km) float64

#Fuel Consumption Comb (L/100 km) float64

#Fuel Consumption Comb (mpg) float64

#CO2 Emissions (g/km) int64

Vehicles are classified according to size. Figure 3 illustrates the vehicle class type. A
total of 16 separate vehicle classes were established. We classified them as hatchbacks,
sedans, SUVs, or trucks. The plot shows that the larger the cars, the more CO2 they emit.
A sedan is a four-door automobile manufactured in a three-box design and has a boot
that is made separately, whereas a hatchback is a four-door automobile produced in a
two-box design. Several minor distinctions are made between a hatchback and a sedan
when comparing characteristics, such as size, comfort, and fuel efficiency, among others.
Sports utility vehicles are commonly referred to as SUVs. An SUV is a kind of motor vehicle
that combines the passenger capacity of a minivan with the off-road prowess and towing
capacity of a pickup truck. Given these factors, SUVs are fantastic choices for great outdoor
adventures. Notably, the larger the automobiles, the more carbon dioxide they produce.
The lowest and higher quartiles of CO2 emissions are represented by the bottom and upper
sides of the box, respectively.

The median and mean levels of CO2 emissions for each vehicle are shown by the line
that divides the box in half horizontally. The lowest and highest quartile CO2 emissions for
each vehicle are shown by the two lines that extend beyond the box. The areas where the
dots cross the maximum quartile represent areas with CO2 emissions that are higher than
the maximum.
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Figure 3. Relationship between vehicle classes and carbon dioxide emissions.

2.2. Preprocessing

The term “data preparation” refers to the actions that must be performed to convert
or encode data so that it can be read and understood by a computer. To produce accurate
and precise model predictions, the algorithm that underpins it must have the capacity
to swiftly analyze the qualities of the data. Given that the quality of the data and useful
information derived from it has a direct influence on our model’s potential to learn, the
preprocessing of our data before feeding it into our model is key. Data preprocessing is
one of the most important stages of machine learning. The phase in the process of data
preparation, which includes filling in missing values, smoothing noisy data, resolving
inconsistencies, and eliminating outliers, is called “filling in missing values”. A total of
6281 entries and 12 features are now provided in the dataset, and neither missing nor
duplicate values are present. Data preparation involves combining data obtained from
various sources into a single, more extensive data storage facility, such as a data warehouse.
The data processing steps are presented in Figure 4.
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Figure 4. Preprocessing steps.

Normalizing a group of independent variables or data components may be accom-
plished using a method called feature scaling. In the field of data processing, this phase,
which is often performed during the data preparation stage, is also known as data nor-
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malization. The simplest technique, which is also known as min-max scaling or min-max
normalization, involves rescaling the range of features to scale the range in [0, 1]. Other
names for this method are min-max scaling and min-max normalization. The formula for
universal normalization is as follows:

x− xmin

xmax−xmin

(1)

2.3. Rough K-Means Clustering (RKM)

A straightforward k-means clustering serves as the foundation for the RKM clustering
methodology that has been presented [51]. Joshi et al. [52] improved the algorithm of
initial concept by computing an approximate centroid by utilizing ratios of distances as
the new recommended method to discriminate between distances that were otherwise
comparable to one another in order to manage high dimensional data. In their study on
ambiguous items related to intrusion detection, Ref. [53] employed the rough k-means
and ECM clustering techniques. The rough k-means method is a methodology that was
developed with the intention of identifying the unclear items that belong to the top limit
of clusters.

Create a lower approximation cluster and a higher approximation cluster using the
data. Each variable is represented by its approximate k-mean.

(P1) An object
→
x can be part of a lower approximation of at most one cluster.

(P2)
⇀

x ∈ A(
→
c i) =⇒

→
c ∈ A(

→
c i)

(P3) An object
→
x is not part of any lower approximation.

m
→
x belongs to the upper approximation of two or more clusters.

(2)

Soft clustering as a concept in general rough means k-test. All objects are given values
for wlower and wupper once the algorithm has run its course. Let the distance between each

item vector and the cluster center, denoted by
→
v let d (

→
v ,
→
c j) be considered. The d (

→
v ,
→
c i)

= min 1 ≤ j ≤ k d (
→
v ,
→
c j), The proportions d (

→
v ,
→
c j)/d (

→
v ,
→
c j), 1 ≤ I, j ≤ k, are used to

identify the participants in. So, if we set T = {j: d (
→
v ,
→
c j)/d (

→
v ,
→
c j) ≥ threshold and i 6= j}

we obtained threshold.

1. In the event that T = φ,
→
v ∈ A (

→
c j) and

→
v ∈ A (

→
c j), ∀j ∈ T moreover, it does not appear

in any more fundamental approximation. The aforementioned condition ensures the
fulfillment of property (P3).

2. Alternately, if T = φ,
→
v ∈ A (

→
c j). Furthermore, A () is a characteristic of (P2),

→
v ∈ A (

→
c j).

The rough k-means method is stable and reliable for dealing with ambiguity because
of its design. The crude k-means algorithm has successfully grouped the items into upper-
bound and lower-limit categories. The things that are located in the upper limit are
considered to be ambiguous, whilst the objects that are located in the lower bound are
considered to be right. The upper limit must not be empty, and the objects that are included
inside it may have a connection to one or more higher bounds that are found in the cluster
numbers. Figure 5 shows the results of RKM for handling the outlier from observation.

The ambiguous objects in CO2 emission datasets have reduced the performance of deep
learning algorithms. When applying the algorithm to the original data, it is observed that the
results are not favorable. From the data, it is investigated that there are ambiguous objects
that hinder the classification algorithms. These outlier objects are examined by rough k-means
clustering to assist in determining the exact ambiguity. The dataset has been clustered for five
corresponding clusters, and the RKM algorithm has clustered the outlier objects into upper
approximation and lower approximation. Those objects that belong to upper approximation,
which belongs to one or more cluster numbers, are excluded (outliers).
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Figure 5. Snapshot from results of the RKM.

2.4. Statistical Analysis

The primary focuses of statistical analysis are the collection, process, interpretation,
and presentation of data. The first thing that must be done in every statistical analysis is
to characterize the target phenomena. The population is based on a known time series,
as well as data gathered through observing the process as it occurs at various periods.
The significance of employing statistical analysis to determine the properties of the data is
not forgotten soon. As a result of statistical research conducted to predict CO2 levels, we
investigated statistical models that are less complicated, use few inputs, and cost less to
operate. Table 2 displays the findings of the statistical analysis. According to Figure 6, sports
vehicles and luxury automobiles are responsible for a greater amount of CO2 emissions
than premium and general-usage cars.

The characteristics that are most indicative of the current CO2 data collection act as
our main research instrument. Figure 7 shows that the data set in question has a significant
number of outliers, which is an essential factor to consider. Given that the mean is the
highest and the mode is the lowest of the three measures, CO2 emissions are positively
skewed, suggesting that the great majority of observations fall below the mean value [54].

Table 2. Sensitivity analysis results.

Engine Size
Fuel_

Consumption_
City

Fuel_
Consumption_

Hwy

Fuel_
Consumption_

Comb

Fuel_
Consumption_

Comb1

CO2_
Emissions

Count 6282.00 6282.00 6282.00 6282.00 6282.00 6282.00

Mean 3.16181 12.61022 9.070583 11.01787 27.411016 25.157752

Std 1.36520 3.553066 2.278884 2.9468 7.245318 59.290426

Min 0.9000 4.20000 4.00000 4.100000 11.00000 96.00000

Max 8.40000 30.600000 20.600000 26.100000 69.00000 522.0000



Sustainability 2023, 15, 7615 9 of 21

 

 

 
 
  

  
  

C
O

2 

Figure 6. Distribution of the carbon dioxide emissions of class car values from the dataset.
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Figure 7. Boxplot of instant carbon dioxide emissions.

Figure 8 displays the average values of the categorical features of the dataset. The most
commonly driven automobile model on Canadian roadways is the Ford model. The Ford



Sustainability 2023, 15, 7615 10 of 21

F-150 FFV is currently one of the most well-known vehicles on Canadian roads. According
to the top ten vehicle class rankings, the SUV-small category is the most popular among
Canadian drivers. Top ten transmission: more than one thousand vehicles are equipped
with either an AS6 or AS8 type transmission. Types of fuel: most automobiles in Canada
operate on fuel types X and Z. CO2 emissions in relation to make: while most vehicles on
Canadian roads are Fords, Bugatti is the brand that produces the highest amount of CO2
per vehicle. CO2 emission v/s: the Bugatti Chiron is among the automotive models that
release the maximum amount of CO2 into the atmosphere. CO2 emissions versus vehicle
class: most heavy vehicles, such as vans, SUVs, and pick-up trucks, are among the top
emitters of CO2. Emissions versus transmission: most cars with automatic transmissions
emit CO2. Emissions versus fuel type: vehicles with fuel type E emit the greatest amount of
CO2. CO2 emissions versus fuel type: vehicles that use fuel type D emit the least amount of
CO2. Where X = regular gasoline; Z = premium gasoline; D = diesel; E = E85; B = electricity.

 

≤
≤

Figure 8. Average of categorical variables and carbon dioxide emissions.



Sustainability 2023, 15, 7615 11 of 21

The relationship between the seven investigated factors is shown in Figure 9. The
factors with the largest bearing on CO2 emissions are provided. Using this procedure,
we settled on seven separate factors to calculate the CO2 output. High negative corre-
lations (≤0.9) are shown between fuel consumption city, fuel consumption_comb, and
CO2_Emissions, whereas strong negative correlations (≤0.8) are observed between cylinder
count and engine displacement and CO2 emissions.

𝑖௧ 𝑓௧𝑜௧ , 
𝑖௧ = 𝜎(𝑊 . 𝑋௧ + 𝑊 . ℎ௧ିଵ + 𝑏)𝑓௧ = 𝜎൫𝑊 . 𝑋௧ + 𝑊 . ℎ௧ିଵ + 𝑏൯𝑜௧ = 𝜎(𝑊 + 𝑋௧ + 𝑊 . ℎ௧ିଵ +   𝑉.  𝐶௧ +  𝑏              𝑊  𝑊 𝑊 , . ℎ௧ିଵ 𝐶௧ . 𝑋௧ 𝑏 𝑏  𝑏

𝑐̅ tanh (𝑊ሾℎ௧ିଵ𝑋௧ 𝑏)

CO2 

Figure 9. Correlation plot between the features and carbon dioxide emissions.

2.5. Prediction Models

Based on long-series forecasting, RNN is unreliable because of the difficulties posed
by gradient explosion and gradient vanishing. Given its superior memory cells, LSTM-type
RNN can avoid the problems of gradient explosion and disappearing gradients during
the training process. LSTM can control both long- and short-term memories due to its
one-of-a-kind hidden state and its three regulating gates. At each time step, LSTM receives,
as input, the currently present input value, the previously obtained output value, and the
hidden state. The memory state is where any and all information from earlier sequences
pertinent to the current state is kept [55,56].

The input gate, the forget gate, and the output gate are shown in Figure 10 shows
fundamental LSTM mechanisms, and these gates input the gate it, forget gate ft, and output
gate ot, respectively, which can be expressed using the following mathematical notation:

it = σ(Wi· Xt + Wi · ht−1 + bi) (3)

ft = σ
(

W f · Xt + W f · ht−1 + b f

)

(4)

ot = σ(Wo + Xt + Wo · ht−1 + Vo·Ct + bo (5)

where Wi, W f , and W f , each represent weight matrices applied to the combination result
of the output value of the previous time step (· ht−1), the memory state of the previous



Sustainability 2023, 15, 7615 12 of 21

time step ( Ct), and the input value of the current time step (· Xt), and bi, b f , and bo, each
represent the bias applied to that combination result, respectively. To regulate each of these
three gates, we employed the sigmoid function as an activation function. This strategy
allows the generation of non-negative derivatives that fall between 0 and 1.

c = tanh (Wc[ht−1Xt] + bc) (6)

Ct = ( ft ∗ Ct−1 + it ∗ c) (7)

where c represents a possible activation function of the tanh type used to change the storage
state of memory. If the values of the gates are either exactly zero or extremely close to zero,
the gates are closed. If the values fed into the gates do not match the expected values, the
gates are opened. If ft = 0 and it > 0, the memory state of the current input candidate should
be forgotten, and instead, the memory state from the previous input candidate should be
utilized as the new memory state.

ht = ot + tanh(Ct) (8)

Moreover, an output gate ot = determines the value read from a given current memory
cell ht. By manipulating the value of the memory state via the movable gate mechanism,
the LSTM may extract useful information about the entire series. For this reason, LSTM is
often used to predict future electrical loads.

𝐶௧ = (𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝑐̅𝑐̅
𝑓௧ 𝑖௧

ℎ௧ = 𝑜௧ + tanh(𝐶௧)           𝑜௧ =ℎ௧

 

Figure 10. LSTM structure. 

  𝐻௧ = 𝑓( ℎ௧ሬሬሬሬ⃗  ∶  ℎ௧ሬ⃖ሬሬሬ) ℎ௧ሬሬሬሬ⃗   ℎ௧ ሬ⃖ሬሬሬሬ 𝑡 𝐻𝐻

Figure 10. LSTM structure.

Bidirectional LSTM

One variant of LSTM, the BiLSTM, shows potential for both retrospective learning
and prospective prediction. BiLSTM incorporates two LSTM layers that propagate in
the opposite direction. The first LSTM layer displays series data prospectively, whereas
the second displays data retroactively. Each LSTM layer’s computation is specified by
Equations (3)–(7), as is the case with the LSTM layer shared by all BiLSTM architectures.
The second LSTM layer is only inverted in BiLSTM. Figure 11 shows that the two LSTM
layers propagate simultaneously in opposite directions. Using a function (f ), which may be
a sum, concatenation, or average, the BiLSTM combines two hidden state sequences—one
from the forward direction and one from the back. BiLSTM develops a new sequence where
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each element is a hybrid of past and future information. A diagrammatic representation of
the steps taken and the results obtained are as follows:

Ht = f (
→
ht :

←
ht) (9)

where
→
ht and

←
ht represents the forward hidden state at time t, and H represents the

backward hidden state at time t. The final series H includes the hidden states from every
time step in the past and future. N is the descriptor for the total number of elements in
the sequence. In this manner, BiLSTM generates a stream whose elements include both
past and future information. It simplifies the processing of series by handling a raw series
and can gather all the elements of a series in both directions. Time series forecasting is
one area where BiLSTM is superior to LSTM models. In spite of their effectiveness in time
series forecasting, LSTM and BiLSTM are restricted in their capacity to learn the complex
dynamics of time series due to the discretization of the observation and emission periods in
both their components. As a result of the fact that the node is a continuous neural network,
an eternally deep network can still be built, which solves the previously addressed problem
regarding LSTM. For electricity load forecasting, we conducted an analysis of nodes using
both the LSTM and BiLSTM architectures.

Figure 11. BiLSTM structure.

The predictive capacity of a deep learning model is determined by the hyperpa-
rameters and the structure of the model. In this inquiry, we compared various sets of
hyperparameters that describe network architectures to assess alternative sub-optimal
network models that may be used to simulate vehicular CO2. Table 3 contains a list of the
structures and hyperparameters investigated throughout this study, as well as the domains
of the search spaces that correspond to each one.

Table 3. Deep leaning model parameters.

Parameters Values

Firstlayer 100

Secondlayer 100

Thirdlayer 200

Fourthlayer 200

executionEnvironment CPU
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Table 3. Cont.

Parameters Values

miniBatchSize 20

maxEpochs 100

Optimizer Adam

Learning rate 0.005

2.6. Evaluation Metrics

Finally, the performance of each model was tested on the test set to evaluate the
model’s generalization skills in predicting unobserved data. Mean, MSE, RMSE, Pearson’s
R%, and R2 were used to evaluate the deep learning model. The statistical metrics used
to evaluate the forecast models were constructed over the course of this research. These
parameters are presented below:

MSE =
1
n ∑

n

i=1

(

yi,exp − yi,pred

)2
(10)

RMSE =

√

√

√

√

∑
n

i=1

(

yi,exp − yi,pred

)2

n
(11)

R2 = 1−
∑

n
i=1 (yi,exp − yi,pred)

2

∑
n
i=1 (yi,exp − yavg,exp)

2 (12)

where yi,exp and yi,pred are the CO2 observation and prediction values, respectively.

3. Modeling Results

Vehicle traffic and its contaminants are mostly blamed for the unhealthy levels of air
pollution, such as CO2, in populated cities, particularly along toll road corridors. Some
models are used to evaluate the consequences of CO2 emissions from transportation on
both humans and the environment, whereas other models are designed to demonstrate
the geographical prediction of these emissions. We employed the MATLAB 2020 software
for the experiment. The physical configuration of the machine had a 2.8 GHz Intel i7
Quad-Core CPU and 8 GB of memory as part of its components. Compared with previous
research, this sample size is still rather small. In contrast, it requires an effective strategy
for dealing with overfitting issues. In the initial model, vehicle class, engine size (L),
cylinders transmission, fuel type, fuel consumption city (L/100 km), fuel consumption hwy
(L/100 km), fuel consumption comb (L/100 km), fuel consumption comb (mpg), and co2
emissions (g/km) are the input variables utilized for the model. For data normalization,
the max-min approach was used. Mean squared error (MSE), root MSE (RMSE), R%, and
determination coefficient (R2) are the four statistical characteristics used in the evaluation
of the constructed model’s capacity in producing accurate predictions. The deep learning
models can represent complicated simulations of non-linear issues, such as vehicle CO2
emission. This capacity was made possible by recent advancements in computing power.
The training process of LSTM and biLSTM methods is shown in Figures 12 and 13.
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Figure 12. Training process of the long short-term memory network model. 
Figure 12. Training process of the long short-term memory network model.

 

. . .
. .

Figure 13. Training process of the bidirectional long short-term memory network model.

3.1. Training Results

The training procedure is a key step in the process of developing a highly effective
model by employing certain experimental data. Approximately 80% of the datasets were
used for this purpose throughout this stage of the process. Figure 14 illustrates the perfor-
mance of both the created LSTM and BiLSTM models, and Table 3 presents the values of
the assessment metrics. The predicted values of the CO2% (Y-axis) and the experimental
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values (X-axis) are completely consistent across all datasets, as shown in Figure 14 and
Table 4, respectively. The constructed LSTM and BiLSTM models are ready to be tested if
the BiLSTM has high R% (97.07%) and R2 (93.78) values, as well as extremely low MSE and
RMSE values. These values indicate that the system can achieve specified goals.

 

 
07125.0 14.90 73.75  
03560.0  95.96  

Figure 14. Regression plot of training carbon dioxide (a) LSTM (b) BiLSTM models.

Table 4. Results of LSTM and BiLSTM models in predicting carbon dioxide emissions at the train-
ing phase.

Models #MSE #RMSE #R (%) R2 (%)

LSTM model 0.004980 0.07057 90.47 77.81

BiLSTM model 0.001177 0.0343 97.07 93.78

3.2. Testing Results

Unseen data from 20% of the datasets were used during the testing phase to validate
the LSTM and BiLSTM models. Figure 12 and Table 5 shows the testing results for both the
LSTM and BiLSTM models, respectively. Figure 15 indicates a strong correlation between
the predicted values and expected values (experimental). In addition, the MSE and RMSE
values were extraordinarily low at 0.0012 and 0.0035, respectively, whereas the R% and
R2 values were extremely high at 97.07% and 0.93.78, respectively. The accuracy of the
BiLSTM model to predict CO2 emissions can aid the government in making decisions to
prevent the increase of pollution. Our results show that the BiLSTM model has the highest
degree of precision in forecasts.

Table 5. Results of LSTM and BiLSTM models in predicting carbon dioxide emissions at the test-
ing phase.

Models #MSE #RMSE #R (%) #R2 (%)

LSTM model 0.005075 0.07125 90.14 75.73

BiLSTM model 0.0012678 0.03560 96.95 93.55
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Figure 15. Regression plot of testing carbon dioxide (a) LSTM (b) BiLSTM.

4. Discussion

Emissions from motor vehicles continue to have a substantial influence on both the
climate and the quality of the air we breathe. In many regions worldwide, the regulations
governing the testing of light- and heavy-duty vehicles are currently being reviewed, and
tight emission limits for pollutants, as well as climate policies and targets, are currently
being developed.

When it comes to selecting the most effective strategies to cut CO2 emissions, having
an accurate prediction of those emissions is important. Because they take into account the
CO2 produced by a variety of vehicle types, the models that were developed as part of
this research are significantly more accurate at predicting CO2 emissions than any of the
existing models, despite the fact that some of those models already exist and have already
been developed.

Given the toll it takes on human life and the built environment, pollution is recognized
as a major problem worldwide. For this reason, accurate modeling strategies are required
to forecast CO2 emissions in highly populated places, such as megacities. Studies on
CO2 emissions have recently shown substantial promise from the use of deep learning
algorithms, such as LSTM and BiLSTM. In this article, we provided a novel technique
for estimating CO2 emissions from vehicles based on deep learning. Our approach has
the potential to attain both high usage accuracy and practicality. Data from different
types of vehicles and operating parameters were obtained from the onboard diagnostic
interface and were used to make predictions regarding exhaust emissions. These parameters
included the following: vehicle class, engine_size (L), number of cylinders, transmission
type, fuel type, fuel_consumption_city (L/100 km), fuel_consumption_hwy (L/100 km),
fuel_consumption_city_comb (L/100 km), fuel_consumption_city_comb (mpg), and CO2
emissions (g/km). The relative importance of each parameter to emission prediction
was analyzed in detail by comparing and contrasting the R2. The model’s accuracy in
estimating CO2 emissions is proportional to the number of elements utilized as inputs. The
more components, the better. Despite this, the amount of accuracy increase that may be
accomplished is determined by the parameters for the input.

Figures 16 and 17 show the histogram error of training and testing for predicting
CO2 emissions. The mean errors for the LSTM and BiLSTM models in the training phase
were 0.0000568 and 0.00399, respectively. The mean histogram errors of the LSTM and
BiLSTM models at the testing phase were 0.0457 and 0.0457, respectively. Finally, this
finding indicates that the BiLSTM model achieved fewer prediction errors. The results of
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a comparison between the proposed system BiLSTM and several prediction models are
shown in Table 6.

 

Figure 16. Histogram error at the training step (a) LSTM (b) Bi-LSTM.

 

Figure 17. Histogram error at the testing step (a) LSTM (b) Bi-LSTM.

Table 6. Comparison between the results of the estimation Co2 emission and our model.

Ref Model RMSE

Ref. [57]
Artificial Neural Network

SVR
1.286
2.752

Ref. [58] long short-term memory network 0.1648

Ref. [59] Artificial Neural Network 2.95

Ref. [60] Support Vector Regressor (SVR) 0.71

Ref. [61] Random forest tree MAE = 0.58

Proposed BiLSTM 0.03560
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5. Conclusions

Increasing levels of CO2 emissions have been connected to various adverse consequences
on human health, both directly and indirectly. When breathed in high quantities, it can
potentially induce severe diseases, including dyspnea, blindness, vertigo, and even delirium. A
high level of CO2 emission contributes to the development of global problems, such as climate
change, acid rain, and global warming. Therefore, modeling and predicting CO2 emission is
very important for forecasting future values of CO2 emission. The following inferences may
be made about the modeling and forecast of CO2 emissions from motor vehicles:

• The development of intelligence system prediction models based on artificial intelligence
algorithms for vehicle CO2 emissions is essential for public health and for the government’s
capacity to act, CO2 emissions over the next several decades should be accurately predicted.

• According to the available research, the consequences of CO2 emissions are observed in
numerous countries. One of the things that we can do to increase humans’ survivability
is to reduce the amount of damaging CO2 emissions. To investigate the pattern of CO2
emissions, we employed a time series model based on deep learning.

• After the model’s performance regarding the essential performance indicators is ana-
lyzed, a suitable model was selected for future forecasting. According to the findings of
recent studies, the LSTM and BiLSTM models provide the greatest performance when
compared with other models that may be used for precise CO2 emission prediction.

• According to the findings of recent studies, the LSTM and BiLSTM models provide the
greatest performance when compared with other models that may be used for precise
CO2 emission prediction. To assess the performance of the models, we used 7 years’
worth of data regarding CO2 emissions. The most successful model was the BiLSTM,
which had an MSE of 0.00126, an RMSE of 0.03560, and an R2 of 93.35%. These
figures were derived from the values observed for the performance metrics. Using this
method, we can make predictions regarding CO2 emissions in a single dimension.

• Numerous facets have not yet been engrained, including future governmental actions,
the transition to renewable energy sources, and economic progress, which are some
examples of external factors that may be examined in the future.
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