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A B S T R A C T

While there is a consensus on the importance of energy transitions for achieving a zero-carbon economy, con-
cerns about unfavorable social impacts on most vulnerable groups have often been raised. This study examines
the complex links between energy transitions, economic growth, income inequality, and energy poverty in 27 EU
countries, based on panel data from 2011 to 2020. The study introduces a new energy poverty measure incor-
porating six indicators using principal components analysis (PCA). Our method of moments quantile regression
(MMQR) model captures asymmetries in the data collected from Eurostat and the World Bank without
compromising accuracy.
The results reveal the significant impact of income inequality measured by the Gini coefficient and economic

wealth measured by GDP per capita on the energy poverty rate. The predicament is exacerbated by long-term
unemployment in countries experiencing high levels of energy poverty. GDP growth remains unexplained by
the model suggesting the weak connection between households’ vulnerability and macroeconomic cycles. Ulti-
mately, energy transitions exhibit an ambiguous influence on energy poverty. In the countries heavily impacted
by energy poverty, energy transitions have a mitigating role. We recommend focusing on income inequality and
long-term unemployment when targeting energy poverty.

1. Introduction

Achieving climate neutrality by 2050 requires an ambitious and
transformative energy transition across EU countries – one that must
gain broad societal acceptance to succeed. However, this transition
poses significant challenges, particularly its potential impact on energy
affordability. Substantial investments in the energy sector, necessary for
this transformation, could lead to higher energy prices and strain
household budgets. These economic pressures risk exacerbating energy
poverty, leaving more households struggling to meet their basic energy
needs. To ensure a socially equitable transition, it is crucial to under-
stand how the energy transition translates into energy poverty and
address these impacts effectively.

Energy transitions, understood as shifts away from fossil fuels to-
wards renewable energy, can impact household economics through two
channels. Firstly, the increase in the share of renewable energy in-
fluences electricity prices, although this impact is not straightforward.
When examining energy markets in the short term, many researchers
point to the merit order effect, which demonstrates a decrease in

electricity prices with a higher share of renewable energy [1,2], in the
longer term, this is not so clear-cut. Utilizing renewable energy requires
costly investments in infrastructure, energy storage, and power grids
[3]. However, measuring the energy transition itself poses challenges
due to varied energy structures and the different stages of renewable
adoption across countries. Indicators such as renewable energy share,
production levels, or installed capacity each capture distinct facets of
this transition, yet often lack comparability or miss recent investments.
Additionally, data inconsistencies between countries can hinder accu-
rate cross-sectional analyses, as variations in technology adoption and
legacy systems may obscure trends. Such phenomena have been
observed in recent years in EU countries. From 2018 to 2022, in 22 out
of 27 EU countries, electricity prices for households increased, with an
increase of more than 20 percent recorded in 11 countries and over 50
percent in four (Czech Republic, Estonia, Italy, Romania) [4]. The sec-
ond channel of impact is the change in energy sources within households
themselves. Households equipped with residential solar photovoltaic
panels or residing in energy-efficient homes can largely mitigate energy
costs. However, this situation is more prevalent among higher-income
households, as evidenced in the case of the US [5,6]. Conversely,
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Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

https://doi.org/10.1016/j.rser.2024.115311
Received 28 March 2024; Received in revised form 12 December 2024; Accepted 27 December 2024

Renewable and Sustainable Energy Reviews 211 (2025) 115311 

Available online 8 January 2025 
1364-0321/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-6704-8661
https://orcid.org/0000-0002-6704-8661
mailto:smiechs@uek.krakow.pl
www.sciencedirect.com/science/journal/13640321
https://www.elsevier.com/locate/rser
https://doi.org/10.1016/j.rser.2024.115311
https://doi.org/10.1016/j.rser.2024.115311
https://doi.org/10.1016/j.rser.2024.115311
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2024.115311&domain=pdf
http://creativecommons.org/licenses/by/4.0/


poorer households in Poland, if they decide to switch from solid fuels
used for heating to gas, may find themselves in an even more chal-
lenging economic situation [7].

Our analysis is also rooted in sociotechnical transition theories,
which assume that successful energy transitions require not only tech-
nological advancements but also the integration of social, economic, and
institutional dimensions to foster inclusivity and fairness" [8]. Thus, the
energy transition must address the socioeconomic barriers faced by
vulnerable populations, ensuring that the shift to renewables actively
reduces energy poverty. This shift is impossible without considering the
path dependency of some countries that are trapped in cheap fossil fuel
consumption. Path dependency often leads to sustained energy poverty
as more affordable and efficient energy sources are reserved for
wealthier areas or urban centers [9]. In this context, some EU countries
are characterized by higher levels of income poverty and lower macro-
economic performance, while others are forerunners to the adoption of
renewable energy with a good targeting of vulnerable populations,
which constitutes a perfect case to study.

There is a lack of cross-sectional research in this area, describing
multiple countries simultaneously. Therefore, this study aims to illu-
minate the impact of the energy transitions on energy poverty across EU
countries. Specifically, the study focuses on two research objectives.
Firstly, it presents an energy poverty index constructed from panel data
that maximizes the differentiation of countries based on energy poverty.
Secondly, the study demonstrates the influence of the energy transitions
in EU countries on the level of energy poverty. In doing so, it provides
policymakers and decision-makers with a better understanding of the
relationship between the energy sector transformation process and its
social consequences.

To conduct an in-depth empirical analysis, we utilize data from 27

European Union countries spanning from 2011 to 2020. The energy
poverty index is constructed using Principal Component Analysis (PCA),
employing six variables commonly used to measure this phenomenon.
Inference is performed using a Method of Moments Quantile Regression
(MMQR), technique proposed by [10]. The MMQR is particularly suit-
able when the model includes endogenous explanatory variables, and
the panel data exhibits individual-specific effects. The energy transition
is approximated using five indicators related to the share of renewable
energy in primary energy consumption, electricity and installed capac-
ity. The models also include variables that potentially influence the level
of energy poverty, such as economic development, economic wealth,
long-term unemployment and social inequalities. Model estimation is
preceded by checking the statistical properties of the time series, which
aids in better understanding any issues related to acceptance.

The estimated models allowed for drawing a number of important
conclusions. Firstly, it revealed that income inequality plays a crucial
role in determining the extent of energy poverty, while the level of
wealth of the economy displayed a negative correlation with this phe-
nomenon. Secondly, in nations with higher prevalence of energy
poverty, long-term unemployment was identified as a contributing fac-
tor exacerbating the situation. Thirdly, the study indicated that eco-
nomic wealth does not significantly influence energy poverty, implying
that the fluctuations in the economy do not notably affect the social
groups experiencing this form of deprivation. Lastly, the research clearly
demonstrated the unicameral positive impact of energy transitions in
mitigating energy poverty especially in countries where it was highest.

The study is structured as follows. The second section reviews the
literature that supports the basis of the composite indicator and macro-
modeling of energy poverty. The third section provides an overview of
the data. The fourth section explains the statistical methods. The fifth

Nomenclature

Abbreviations
AT Austria
BE Belgium
BFP Building Fuel Poverty Index
BG Bulgaria
CEPI Composite Energy Poverty Indicator
Const Constance
CP04 HICP category: Housing, water, electricity, gas and other

fuels
CP045 HICP category: Electricity, gas and other fuels
CY Cyprus
CZ Czechia
DE Germany
DK Denmark
EE Estonia
EL Greece
EP Energy Poverty
EPVI Energy Poverty Vulnerability Index
ES Spain
EU European Union
EU-LFS EU Labor Force Survey
EU-SILC European Union Survey on Income and Living Conditions
FA Factor Analysis
FI Finland
FR France
GDP Gross Domestic Product
GDP GR Gross Domestic Product Growth
HC Housing costs overburden
HICP Harmonized Index of Consumer Prices
HR Croatia

HU Hungary
IE Ireland
IR Interquartile Range
IT Italy
LN Long-term unemployment rate
LT Lithuania
LU Luxembourg
LV Latvia
MEPI Multidimensional Energy Poverty Index
Min Minimum
MMQR Method of Moments Quantile Regression
MT Malta
NL Netherlands
OECD Organisation for Economic Co-operation and Development
PC Principal Component
PCA Principal Components Analysis
PL Poland
PPP Purchasing Power Parity
PT Portugal
Qtile Quantile
Qu quartile
Ren Renewable energies in gross final energy consumption
RenE Low-carbon energies in gross electricity generation
RenEC Low-carbon energies in total installed electricity capacity
RenWS Wind and solar energies in gross electricity generation
RenWSC Wind and solar energies in total installed electricity

capacity
RO Romania
SD Standard Deviation
SE Sweden
SI Slovenia
SK Slovakia
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section discusses the results. The last section concludes the analysis.

2. Literature overview

This study pioneers in several respects. Firstly, we introduce the
composite energy poverty indicator (CEPI) constructed by the means of
well-designed statistical approach. Our measure stands out because the
following: i) we compile massive information in our panel dataset of 27
countries from 2011 through 2020; ii) we account for many facets of
energy poverty and rely on suitable statistical tool to reveal the most
meaningful combinations of factors; iii) our measure is suitable for
comparative and intertemporal analysis. Secondly, we forge a bridge
between clean energy transitions and energy poverty. Our model ac-
counts for a complex process of moving towards carbon taken place
during a ten-year period of time in 27 EU countries. This process is
accompanied with societal changes and impacts people’s welfare and
life in general. We discover neutrality links between energy poverty and
energy transitions with special emphasis put on inequality and economic
development. In light of the preceding, we identify two strands of
literature our study contributes to and discuss them point by point.

2.1. Composite energy poverty indicator

Much effort has been put into disclosing the complex nature of en-
ergy poverty [11,12,13]. and many others provide a thorough review of
the definitions and indicators of energy poverty. Most researchers agree
that energy poverty is determined by income, energy prices, and energy
efficiency of buildings [14]. Energy poverty is also related to a subjective
feeling of thermal discomfort in winter or summer, depending on the
geographical area or country [15,16]. However, self-assessed and
objective metrics of energy poverty capture different population strata
[17], [18]. Comprising all the aspects of energy poverty poses a serious
obstacle to implementing a single measure across Europe, which stirs the
debate about the necessity of a single measure [19].

While there are no controversies surrounding the concept of energy
poverty, defined as the situation where a household experiences inad-
equate levels of energy services in the home, measuring this phenome-
non itself is challenging. In practice, three approaches are employed to
measure energy poverty:

1. The expenditure approach evaluates energy poverty by comparing
household energy costs to established thresholds, providing insight
into financial constraints.

2. The consensual approach relies on self-reported assessments of living
conditions and the ability to meet basic needs within a community
context, offering a subjective view of deprivation.

3. Direct measurement, on the other hand, directly assesses the level of
energy services attained by households against predefined standards,
offering a tangible measure of energy poverty based on actual energy
access and usage.

Each of these approaches offers specific metrics that allow us to view
energy poverty from a particular perspective. However, no measure is
universal and should be applied more locally, within a specific
geographic or social context (politically and culturally contingent) [16].
For this reason, efforts have been made to devise composite measures
that consider various facets of this form of deprivation [20]. put forward
a multidimensional energy poverty index (MEPI), which comprises three
dimensions: "energy," "income," and "energy efficiency of housing."
While this index delineates energy poverty in Japan, its dimensions
could be applicable to developed nations provided accurate data is
amassed. Additionally, there exist alternative proposals for a compre-
hensive assessment of energy poverty [21]. introduced an index
encompassing aspects such as cooking, lighting, household appliances,
entertainment/education, and communication, tailored specifically for
developing countries [22]. introduced the Building Fuel Poverty Index

(BFP) for Italy, which concentrates on the interaction between building
energy performance and fuel poverty. It highlights energy efficiency,
housing affordability, and housing conditions as key factors.

[23] delved into the structural vulnerability of energy poverty in the
EU, examining its correlation with excess winter mortality [24]. intro-
duced the Energy Poverty Vulnerability Index (EPVI) for Portugal,
which maps energy-poor regions and identifies intervention hotspots by
integrating socioeconomic indicators, building characteristics, and en-
ergy performance, advocating for localized strategies to tackle energy
poverty challenges. Lastly [25], proposed a composite index that ac-
knowledges the drivers and consequences of energy poverty to rank the
Member States of the European Union. A key limitation of these ap-
proaches is either their applicability to individual countries or their lack
of a temporal dimension.

2.2. Macro-factor models of energy poverty

Energy poverty macro-models focusing on countries and large re-
gions differ in terms of goals and indicator selection. Most of the studies
contain temporal dimension and include panels of data. Vast majority of
macro-models center around economic development, GDP growth,
crises.

For example [26], study the impact of economic crises on the EU
countries during 2004–2019. The authors consider electricity prices,
GDP, unemployment, the at-risk of poverty, urbanization and the
number of rooms in the model to find out strong effect of the first in-
dicator on the levels of energy poverty measured by the consensual and
composite metrics. Economic growth is noted to have a significant
impact on energy poverty. The same idea is supported by [27], who
previously assessed the case of Greece by approximating energy poverty
with electricity consumption. The authors document negative conse-
quences of economic crisis for the people’s ability to pay electric bills. In
line with prior findings [28], assume electricity prices are key to un-
derstanding energy poverty trends. The study claims that energy poverty
levels in Spain were influenced by economic crisis as demonstrated by
the data for the period of 2004–2012 [29]. builds a macro model for 28
EU countries with the goal to investigate energy poverty and the Gini
coefficient, GDP causal relationships inter alia. The model reveals strong
dependency between the energy poverty rate on the one hand, and
inequality and GDP per capita on the other. Some authors go further in
the macroeconomic analysis and examine the link between energy
poverty and public spending [30] or particular governmental programs
and social aids schemes [31,32].

Yet, little attention is devoted to studying the impact of energy
transitions on the prevalence of energy poverty in the EU, especially in
the context of the recent developments. The importance of the topic has
already been raised by some scholars [3,33,34]. In particular [3],
emphasize such issues as limited access to energy transitions benefits
and disproportioned burden put on vulnerable people [35] discuss
environmental justice, which should be ensured in the process of energy
transitions [34]. construct a theoretical framework of energy transitions
within the sustainability and circularity discourse. The emerging in-
sights from the literature inspire us to build the model, which explains
the impact of energy transitions on energy poverty and goes beyond the
macro-economic development.

3. Data description

In this research we use panel data aggregated at a country level – the
data span from 2011 to 2020. We consciously limit the time range to
avoid unusual sharp declines and peaks as well as missing values.
Additionally, in 2021 some countries experienced breaks in the time
series of the EU-SILC, which is one of the primary sources of our data.
The last fact further explains the choice of a time range. Our dataset
contains 27 EU countries, such as Austria (AT), Belgium (BE), Bulgaria
(BG), Cyprus (CY), Czechia (CZ), Germany (DE), Denmark (DK), Estonia
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(EE), Greece (EL), Spain (ES), Finland (FI), France (FR), Croatia (HR),
Hungary (HU), Ireland (IE), Italy (IT), Lithuania (LT), Luxembourg (LU),
Latvia (LV), Malta (MT), Netherlands (NL), Poland (PL), Portugal (PT),
Romania (RO), Sweden (SE), Slovenia (SI), and Slovakia (SK).

Different sets of variables are selected to construct the CEPI and build
mixed quantile regressionmodels. We collect most of the indicators from
the Eurostat database except GDP per capita in PPP, which is derived
from the World Bank database. The data fulfill multiple criteria of
accessibility and clarity, quality, relevance, accuracy, coherence, and
comparability. The last feature of the data is crucial in comparative
analysis, like the present one.

3.1. Composite energy poverty indicator data

This study is designed in a two-stage way. In the first stage, we assess
energy poverty using a composite indicator approach. In the second
stage, we build a model, where energy poverty is a response variable,
and six other variables are independent. We propose different methods
to estimate energy poverty described in detail in the methodology sec-
tion. Our approach is driven by the need to ensure a comprehensive and
comparable measurement of energy poverty across time and space. We
emphasize the policy soundness and feasibility of energy poverty
assessment.

Table 1 describes the variables selected for a CEPI. We propose to
measure energy poverty based on six variables commonly estimated in
the EU statistics. The choice of the variables is determined by a strong
intention to embrace the most recognized and accepted by the research
community aspects of energy poverty. The indicators capture various
manifestations of energy poverty, such as subjective assessment, over-
indebtedness, housing deprivation, natural and living environment,
housing costs, and energy consumption. Since energy poverty is
measured at a household level, the data are gathered through
questionnaires.

Except HICP, all variables are collected from the EU-SILC, a well-
known source of the EU annual micro-data available in cross-sectional
and longitudinal formats since 2001. Despite some deficiencies, e.g.
lack of energy poverty target, the EU-SILC represents the most harmo-
nized and updated survey available for comparative analysis of energy
poverty in Europe by now. The household and individual data are
transmitted from the national statistical offices to Eurostat and the
whole process is regulated by the EU law (Regulation EU 2019/1700).

Fig. 1 shows boxplots of the descriptive statistics of the energy
poverty indicators, such as mean, median, maximum, minimum, the first
and the third quantiles. The biggest spread in values is observed in the
inability indicator. In this case the interquartile range equals 11.93 pp.
The less scattered are values in the dark indicator signifying homoge-
neity of households’ answers close to the median value 5.6 %. The
highest median value is 13.2 % for the grime indicator, which points at
the gravity of the environmental problems. And the lowest median is
1.35 for the HICP indicator. We note upper boundary outliers in all in-
dicators, and lower boundary outliers in the HICP variable. In the latter
case negative values mean decline in consumer prices from the previous
year.

3.2. Method of moments quantile regression data

Our MMQR model includes six independent variables, which are key
to understanding the macro-economic impact of energy transitions on
energy poverty. The description of the variables is provided in Table 2.
We further justify the choice of the variables for the model.

The first indicator is the Gini coefficient is considered a good indi-
cator of inequality in a society and is monitored by Eurostat regularly as
a part of the income and living conditions statistics [36]. documents that
the Gini indicator is robustly correlated with energy poverty measured
by the inability to keep home warm indicator. Another good measure of
a country’s wealth is GDP. GDP shows the wealth of a country each year,

while the GDP growth reveals the dynamics of economic growth. The
Gini coefficient, together with the GDP indicator, is frequently employed
in a similar macro-level analysis of energy poverty [26,27,28].

Since the clean energy transitions is central to this study, we intro-
duce five renewable energy variables. All renewable indicators,
described in Section 3.2, are used in separate models and capture energy
transitions from various perspectives.

The impact of income on energy poverty cannot be overstated and is
recognized by many researchers [37,38,39,40]. Our last variable is
long-term unemployment, which is supposed to indicate the income
situation of vulnerable households. The long-term unemployment sig-
nifies a serious dysfunction of the labor market and represents a greater
challenge to policymakers compared to unemployment in general. Being
unemployed for more than a year negatively affects the mental and
physical condition of households and individuals. Accounting for un-
employment is a common point in energy poverty macro-research [26,
41].

Table 1
Description of the variables included into the composite energy poverty
indicator.

Shortcut Variable name Variable description

Inability Inability to keep home warm Households provide a yes-no answer to
the question about affordability of
warmth in a dwelling and does not
necessarily reflect the current situation
of a cold dwelling. Eurostat includes this
indicator of household’s material
deprivation (EU-SILC).

Arrears Arrears on utility bills Households assess their situation within
the last 12 month and can respond yes,
once/yes, twice or more/no to the
question about arrears on utility bills.
Utility bills include electricity, heating,
gas, waste disposal, water, etc. This
variable measures the economic strain
and refers to the inability to pay (EU-
SILC).

Dark Total population considering
their dwelling as too dark

The indicator represents the share of the
population considering their dwelling as
too dark, not having enough light.
Eurostat collects this variable as a part
of housing deprivation monitoring
within income and living conditions
analysis (EU-SILC).

Grime Pollution, grime or other
environmental problems

Eurostat collects this indicator of
subjective well-being as a percentage of
households reporting exposure to
pollution, grime or other environmental
problems. The variable indicates quality
of life, especially natural and living
environment (EU-SILC).

HC Housing costs overburden This variable is aggregated by Eurostat
under the domain income and living
conditions (EU-SILC). It represents a
total percentage of households, which
spend more than 40 % of their
disposable income on housing costs in a
given year. Both disposable income and
housing costs are net of housing
allowances. The variable captures the
expenses related to the right to live,
including utilities and rental payments
in the case of tenants.

HICP HICP: harmonized index of
consumer prices

HICP is an official measure of inflation
based on consumer prices by different
purposes. We use annual average rate of
change in individual consumption of
electricity, gas and other fuels (CP045),
i.e. a subcategory of housing, water,
electricity, gas and other fuels (CP04).
This variable correctly reflects inflation
attributed to the energy component of
housing costs.
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Table 3 presents the descriptive statistics of key independent vari-
ables used in the regression analysis. All of our variables are skewed but
to a different extent. We observe that the distribution of most of the
indicators except GDP and LN is approximately normal. Both GDP and
LN are right-skewed higher concentrations around lower values, which
is a good sign in the case of LN. Gini informs about relatively low to
moderate inequality within European countries. Multiple upper
boundary outliers are observed in Ren, LN and GDP, while many
extremely low values are noted in GDP GR. We report that on average
from 2011 to 2020 in the EU countries, the Gini coefficient was about
29.7 %, GDP growth was about 1.5, and long-term unemployment
equaled 4 %. The share of renewables in final energy consumption
amounted to around 20 % on average. The mean values for RenE and
RenEC are close to 0.5, while average RenWS and RenWSC reach 0.11
and 0.16 respectively.

4. Methodology

4.1. Composite index of energy poverty

Following the definition provide by the European Commission’s first
state-of-the-art report [42], composite indicators are ‘[…] based on
sub-indicators that have no common meaningful unit of measurement
and there is no obvious way of weighting these sub-indicators’. This
suggests that constructing a composite index involves gathering a suit-
able set of features and appropriately weighting them. Equal weighting,
the most common approach in composite indicator development [43],
treats all variables as equally important, which may not reflect their true
significance. To address this issue, data-driven weighting methods like
Principal Component Analysis (PCA) are utilized [44]. In PCA, the
original dataset can be depicted through a series of equations, corre-
lating with the number of indicators. These equations act as linear
transformations of the original data, systematically designed to reveal
the maximum variance in the initial equation, followed by the expla-
nation of subsequent variances in successive equations. In this study, the
standard procedure, where the factor loadings of first principal
component as used as weights [45]. In results the composite index in-
dicates the direction in the data space that maximally differentiates
countries over time and space due to energy poverty.

4.2. Method of moments quantile regression

To analyze the determinants of energy poverty in this study, a
Method of Moments Quantile Regression (MMQR) technique proposed
by [10] is applied. The traditional panel regression technique, as out-
lined by [46], allows for the analysis of the diverse impacts of covariates
across different conditional quantiles of the dependent variable. How-
ever, it overlooks the fixed effects contributed by individuals within the
system. Addressing this gap, [10] introduced the MMQR approach,
which incorporates individual effects into the total distribution, thereby
enabling us to discern conditional heterogeneous impacts of covariates
on energy poverty. This innovative method suggests that individual
characteristics within the panel may have distinct heterogeneous im-
pacts on the conditional distributions of dependent variables, poten-
tially yielding more robust insights compared to traditional quantile
regression techniques pioneered by [47,48,49]. Additionally, the
MMQR has the capacity to identify asymmetries in covariates based on
their positions and alleviate the impact of their endogenous properties,
as observed by [50]. Furthermore, in a nonlinear context, estimates
derived from the MMQR exhibit enhanced robustness, reliability,
comparability, and reproducibility. Expanding on the research con-
ducted by [10], the fixed-effects panel quantile model can be articulated
as follows:

Yit= αi+Xʹ
itβ +

(
δi+Zʹ

itγ
)
Uit (1)

Where it is assumed that P
{

δi+źitγ> 0
}
= 1. Vector (α, β́ , δ, γ́ )

comprise the estimated model parameters. The individual fixed effects
are determined by (αi,δi), for i = 1, ..,n and k-vector of known subset of
X is denoted by Z, specifically:

Zl=Zl(X), l = 1,…k. (2)

It is assumed that in equation (1), Zit is distributed identically for any
fixed effect across different units over time. Similarly, Uit is identically
and independently for individuals distributed through time, however it
is orthogonal to Zit standardized to complete the standard conditions
[10]. equation (1) expressed in terms of quantile of dependent variables,
is given by:

QYi,t

(
τ|Xi,t

)
=(αi+ δi(τ))+Xʹ

i,tβ+Z
ʹ
itγq(τ), i=1, ..,N, t=1, ..,T (3)

Fig. 1. Boxplots of the variables comprising composite energy poverty indicator.
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In equation (3), the outcome variable Yit (Energy poverty index) and its
distribution represented by quantiles QYi,t

(
τ|Xi,t

)
is subjected to loca-

tional distribution of predictors (GDP, GDP GR, Gini, Ren) for any in-
dividual (i) and is time invariant. This fixed effects for given country is
represented by αi(τ) = αi+ δiq(τ). The model parameters are obtained
by numeric optimization techniques.

5. Results and discussion

In this section, we report empirical results and discuss findings. Our
first task is to create the energy poverty measure, which we pass to the
model later as a response variable. We employ several methods,
including PCA, FA and equal weights approach. The latter two methods
are used to ensure the PCA results are robust. Our second task is to build
a model, which examines the link between energy poverty and clean
energy transitions. We also enrich the model to include a set of
inequality and economic growth variables.

5.1. Composite energy poverty indicator

We construct our CEPI using a couple of statistical techniques, such
as PCA and FA, and an equal weights approach frequently applied in the
energy poverty research [51,52]. The main method of this study is PCA.
The panel data include observations by countries and years (long
format). Our goal is to retain the most information (variance in data) by
reducing the number of variables to one. Before identifying the principal
components, we explore the relationships between the variables. As
shown in Table 4, we observe a positive correlation between all the
variables, except dark and HC. The strongest link is found between ar-
rears and inability as well as arrears and HC. Other variables are not
strongly related to each other, which means that they do not contain a
lot of redundant information.

The results of the PCA analysis are presented in Table 5. The first
component explains 37.2 % of all the variance in the data; the second
one represents 19.7 % of the variance and so on in the diminishing order
of significance. The PCA allows us to reduce the number of variables and
retain only the most informative one as a CEPI. The proportion of the
variance in each variable explained by the first component varies from
0.555 (arrears) and 0.545 (inability) to 0 (HICP).

Table 6 provides the descriptive statistics of the CEPI for all years and
countries. The values range between − 1.9 and 5.7, where positive
numbers and negative numbers signify the level of energy poverty above
and below the average respectively. The distribution is asymmetric with
the most outliers on the right side, i.e. high levels of energy poverty.

Fig. 2 displays the more detailed distribution of the CEPI by year and
country. The heatmap shows the magnitude of energy poverty, ranging
from the lowest to the highest depending on the intensity of the color.
Our results confirm that two countries, Greece and Bulgaria, report high
energy poverty rates throughout the period. Generally, the two upper
boundary outliers face positive changes in the reduction of energy
poverty. In contrast, Finland and Sweden have the lowest CEPI based on
PCA calculations. Since the situation in each country changes dynami-
cally, we analyze the problem in each country-year observation.

Fig. 3 captures the distribution of CEPI by quantiles. Six quantiles
correspond to the 10th, 25th, 50th, 75th, and 90th quantiles used in the
MMQR models. Most countries, with rare exceptions, experience a sig-
nificant reduction in CEPI at the end of the observation period. Slovenia,
Poland, Cyprus, Croatia, and Ireland show remarkable progress moving
from higher to lower distribution quantiles. We also observe a marked
improvement in Latvia, where CEPI dropped from 2.9 in 2011 to − 0.73
in 2020. The results for other countries oscillate within certain limits,
with a noticeable decrease in the level of energy poverty in 2016–2017
compared to 2011. Falling trends in most countries, including troubled
Bulgaria, indicate progress in counteracting energy poverty. Some
countries, such as Belgium, Luxembourg, Spain, and France, experience

Table 2
Description of the variables in the MMQR model.

Shortcut Variable name Variable description

Gini Gini coefficient of equivalised
disposable income

The Gini coefficient is measured on the
scale from 0 to 100, where 0 indicates
perfect equality and 100 means full
inequality. The equivalised disposable
income, which is the total income of a
household minus tax and other
deductions, from the EU-SILC is used
to calculate this measure. The
modified OECD equivalence scale
applies.

GDP GDP per capita, PPP (constant
2017 international $)

The World Bank defines this measure
as the GDP per capita in international
dollars based on purchasing power
rates and fixed to 2017 prices, which
makes this measure comparable across
countries. The values are divided by
the number of a population in a
country.

GDP GR Real GDP growth rate –
volume, per capita

The annual growth rate of the real GDP
is computed in terms of chain linked
volumes at the prices of a previous
year. The value is given per capita.
Eurostat uses this measure to compare
the dynamics of GDP development
over time and between different
countries.

Ren Renewable energies in gross
final energy consumption

The indicator gives the share of
renewable energy as defined by
Eurostat (2024) in gross final energy
consumption in percentage. The gross
final energy consumption is calculated
as an end-used consumption of energy
in addition to grid losses and power
plants consumption. The EU
introduced this indicator to monitor
progress towards Sustainable
Development Goals as well as the
achievement of Fit for 55 targets.

RenE Low-carbon energies in gross
electricity generation

The indicator represents the share of
low-carbon energies, i.e. renewables
and biofuels as well as nuclear energy,
in gross electricity generation
measured in Terawatt hours (TWH).
Renewables and biofuels category
includes hydro, wind, solid biofuels
and renewable wastes, biogases liquid
biofuels, solar, geothermal,
geothermal, tide, wave and ocean, and
other. The indicator is calculated based
on the Eurostat energy statistics.

RenEC Low-carbon energies in total
installed electricity capacity

This measure is calculated as a share of
low-carbon energy sources in total
installed electricity capacity (MW). We
deduct combustible fuels and retain,
such energies as nuclear, hydro, wind,
solar PV, solar thermal, geothermal,
tide, wave and ocean, and others. The
data drives from the Eurostat energy
statistics.

RenWS Wind and solar energies in
gross electricity generation

The indicator represents the share of
combined wind and solar energies in
gross electricity generation measured
in Terawatt hours (TWH).

RenWSC Wind and solar energies in
total installed electricity
capacity

This measure is calculated as a share of
combined solar and wind capacity in
total installed electricity capacity
(MW).

LN Long-term unemployment
rate

Long-term unemployment refers to
unemployment for 12 months and
more. The variable is counted as a
percentage of the population in labor
force at the age class from 15 to 74
years. Eurostat collects this indicator
from the EU Labor Force Survey (EU-
LFS).
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fluctuations in energy poverty rates. In 2020, Spain, France, and
Denmark experienced an increase in CEPI, which can be attributed to the
impact of indicators with the highest weights. Our analysis also reveals
that the number of observations in the highest quantile fell by 14.8 p.p.
in 2020 compared to 2011. The highest CEPI is reported in Greece
throughout the period.

We perform a robustness check of the PCA results by following two
alternative approaches. The first approach is FA, which is based on
Bartlett’s scores. The arrears variable is almost entirely explained by the
first factor. The share of inability and HC is equal to 0.7 and 0.5,
respectively. Some commonalities can be found between PCA and FA

loadings. In both cases, we observe the strong presence of arrears,
inability, and HC variables. The marginal role of HICP is confirmed in
the first component and the first factor results, which aligns with the
findings obtained from the PCA analysis. Detailed statistics and graphs
are available upon request. The description of CEPI (FA) statistics is
presented in Table 7. According to both methods, Greece and Bulgaria
are the countries most affected by energy poverty, with Greece leading
the ranking. France, Finland, and Greece belong to the same quantiles
over all years. We observe almost the same recovery rate at the end of
the period. In general, there are no striking dissimilarities in the PCA and
FA results.

The second approach assigns equal weights to the six indicators of
energy poverty. This method produces results presented in Table 8. In
this case, the standard deviation and the interquartile range are much
higher than before, highlighting the differences between countries. Yet,
the pattern of the trend with two extreme upper outliers (Greece and
Bulgaria) measured by the equal weights approach is like the one dis-
cussed above. The quantile distribution of country-year observations
provides the same insight as the PCA and FA methods demonstrating the
robustness of the results. Detailed statistics and graphs are available
upon request.

5.2. Method of moments quantile regression models

5.2.1. Model specification
To examine the relationship between the progress of energy

Table 3
Descriptive statistics of the variables used in the MMQR model.

Variable Min 1st qu. Median Mean 3rd qu. Max SD Skew Range

Gini 20.9 26.9 29.2 29.73 32.7 40.8 3.87 0.36 5.8
GDP 18662 29168 37791 41947 50320 116284 18870.99 2.18 21152
GDP GR − 11.6 0.025 1.5 1.484 3.6 23.3 3.57 0.06 3.575
Ren 1.85 11.68 16.95 20.04 26.06 60.12 11.69 0.97 14.38
RenE 0.0045 0.302 0.531 0.511 0.687 0.985 0.26 − 0.17 0.385
RenEC 0.0091 0.321 0.493 0.473 0.621 0.925 0.21 − 0.15 0.3
RenWS 0.0022 0.0341 0.0783 0.1113 0.1447 0.6095 0.11 1.94 0.61
RenWSC 0.0004 0.0806 0.146 0.167 0.2308 0.495 0.11 0.9 0.5
LN 0.600 1.925 2.900 4.088 5.1 17.5 3.26 1.7 3.175

Note: Min – minimum; max – maximum; qu. – quartile; SD – standard deviation; skew – skewness. The values are truncated.

Table 4
The correlation matrix of the energy poverty indicators.

HICP arrears inability dark grime HC

HICP 1.000 0.055 0.031 0.019 0.017 0.060

arrears
 1.000 0.640 0.217 0.154 0.512

inability
  1.000 0.283 0.298 0.296

dark
   1.000 0.353 − 0.039

grime
    1.000 0.194

HC
     1.000

Table 5
PCA loadings and importance of components.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

HICP  0.134 0.987   
arrears 0.555 0.282  0.293  − 0.719

inability
0.545   0.344 0.547 0.529

dark
0.312 − 0.658  0.289 − 0.600 0.141

grime
0.355 − 0.478  − 0.696 0.326 − 0.231

HC
0.410 0.492  − 0.477 − 0.478 0.362

Standard deviation
1.494 1.087 0.996 0.879 0.734 0.526

Proportion of variance
0.372 0.197 0.165 0.128 0.089 0.046

Cumulative proportion
0.372 0.569 0.734 0.863 0.953 1.000

Note: Comp. – component. The values are truncated to 3 decimal places.

Table 6
Descriptive statistics of the CEPI (PCA).

Min 1st qu. Median Mean 3rd qu. Max SD Skew IR

− 1.891 − 1.105 − 0.439 0.000 0.753 5.650 1.5 1.44 1.858
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Fig. 2. CEPI by country and year, based on PCA.

Fig. 3. Heatmap of CEPI quantiles, based on PCA.
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transitions and energy poverty, we consider five models, with the dif-
ferences between them stemming from how we understand energy
transitions. The detailed specification of these models has been pre-
sented in Table 9. As can be seen, each of the models shares the same set
of control variables, namely Gini, GDP, GDP GR, LN and five proxies for
energy transitions: Ren, RenE, RenEC, RenWS and RenWSC, which take
into account: renewable energies in gross final energy consumption,
low-carbon energies in gross electricity generation, low-carbon energies
in total installed electricity capacity, wind and solar energies in gross
electricity generation, and wind and solar energies in total installed
electricity capacity.

5.2.2. Preliminary tests
In this section, we present empirical results and discuss our findings.

Before delving into the main results, we provide details of the standard
preliminary tests. We initially assess the presence of cross-sectional
dependence (CD) within the panel. CD has the potential to distort the
true parameter values of coefficient estimates. Neglecting cross-
sectional dependence, which may stem from unobserved common fac-
tors, can significantly reduce the efficiency gains of panel data if dis-
regarded [53]. In this study, we evaluate cross-sectional dependence
(CD) using the [54] CD test. The results from the CD test are presented in
Table 10, revealing a presence of CD in the data. Specifically, the test
statistics are significant for four out of five variables, with Gini being the
exception. Next, we examine the homogeneity of slopes in our models
using the Pesaran and Yamagata test [55].

The test statistics presented in Table 11 demonstrate high signifi-
cance, thereby supporting the alternative hypothesis of heterogeneous
slopes for both models. Next, we apply the second-generation unit root
test (CIPS) developed by [56], with the results presented in Table 12. We
consider two commonly adopted specifications: one with an intercept
and another with both an intercept and a linear trend. Based on the test
results, it appears that the only stationary variable is GDP GR. The other
variables exhibit a unit root. The non-stationarity of the variables in the
panel implies that it is only meaningful to analyze the models estimated
at the levels if they are in long-run equilibrium.

Therefore, in the subsequent step, we apply two panel cointegration
tests. The first test proposed by [57] permits the inclusion of
panel-specific cointegrating vectors. In contrast, the second test intro-
duced by [58] does not necessitate any correction for the temporal

dependencies of the data. However, it allows for the accommodation of
individual-specific short-run dynamics, individual-specific intercept and
trend terms, as well as individual-specific slope parameters. The results
of both types of tests are displayed in Table 13, indicating, for majority
of specification the presence of a long-term relationship.

Table 7
Descriptive statistics of the CEPI (FA).

Min 1st qu. Median Mean 3rd qu. Max SD Skew IR

− 1.163 − 0.739 − 0.423 0.000 0.363 3.972 1.08 1.55 1.102

Table 8
Descriptive statistics of the CEPI (equal weights).

Min 1st qu. Median Mean 3rd qu. Max SD Skew IR

− 5.344 − 2.624 − 0.928 0.000 1.530 13.312 3.49 1.24 4.154

Table 9
List of models considered in the study.

Model 1 EPit,q = α0,q + α1,qGiniit + α2,qlogGDPit + α3,qGDPGRit + α4,qLNit +
α5,qRenit + εit

Model 2 EPit,q = α0,q + α1,qGiniit + α2,qlogGDPit + α3,qGDPGRit + α4,qLNit +
α5,qRenEit + εit

Model 3 EPit,q = α0,q + α1,qGiniit + α2,qlogGDPit + α3,qGDPGRit + α4,qLNit +
α5,qRenECit + εit

Model 4 EPit,q = α0,q + α1,qGiniit + α2,qlogGDPit + α3,qGDPGRit + α4,qLNit +
α5,qRenWSit + εit

Model 5 EPit,q = α0,q + α1,qGiniit + α2,qlogGDPit + α3,qGDPGRit + α4,qLNit +
α5,qRenWSCit + εit

Table 10
Cross-sectional dependence test (CD) (the null hypothesis: no cross-sectional
dependence) and correlation.

Variables CD Corr Abs Corr

EP 26.02*** 0.439 0.564
Gini − 0.69 − 0.012 0.4660
GDP 43.78*** 0.739 0.744
GDP GR 39.70*** 0.67 0.67
Ren 43.38*** 0.732 0.804
RenE 32.15*** 0.56 0.58
RenEC 33.72*** 0.59 0.74
RenWS 47.199*** 0.83 0.83
RenWSC 49.53*** 0.87 0.87

Note: *, **, *** indicate the level of significance at 10, 5, and 1 %, respectively;
Pesaran’s (2021, 2015) CD test is performed using the Stata ‘xtcdf’ command.,
CD means - CD-test; Corr - average correlation coefficient; Abs corr - average
absolute correlation coefficient.

Table 11
Slope homogeneity test (the null hypothesis: slope coefficients are homogenous).

Test statistics/
Model

Model 1 Model 2 Model 3 Model 4 Model 5

Delta tilde 3.033 *** 3.427*** 3.436*** 3.602*** 3.432***
Delta tilde
adjusted

5.537 *** 6.256*** 6.274*** 6.576*** 6.266***

Note: *, **, *** indicate the level of significance at 10, 5, and 1 %, respectively.
Pesaran and Yamagata’s (2008) CD test is performed using the Stata ‘xthst’
command.

Table 12
Panel unit root CIPS test (the null hypothesis: series are nonstationary).

Variables constant constant and trend

EP − 2.350** − 2.533
Gini − 1.678 − 3.209***
logGDP − 2.083* − 2.394
GDP GR − 2.777*** − 2.596
Ren − 1.841 − 2.590
RenE − 1.848 − 2.123
RenEC − 1.500 − 1.536
RenWS − 1.575 − 1.947
RenWSC − 2.194* − 2.335

Note: The critical values at 10 %, 5 %, and 1 % significance levels for the con-
stant specification are − 2.1, − 2.22, and − 2.44 respectively. For the constant and
trend specification, the critical values are − 2.67, − 2.82, and − 3.1 respectively;
*, **, *** indicate the level of significance at 10, 5, and 1 %, respectively;
Pesaran’s (2007) test is performed using the Stata ‘xtcips’ command. We spec-
ified: maxl [1], bglag [1].
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5.2.3. Method of moments quantile regression
The parameters of quantile regression models are estimated for the

10th, 25th, 50th, 75th, and 90th quantiles, allowing for an assessment of
the significance of the relationships between individual variables and
energy poverty depending on its prevalence.

Table 14 presents the coefficients derived from the initial specifica-
tion of the model. For three variables, specifically Gini, GDP, and Ren, a
uniformly significant relationship is discerned across all quantiles.
Concerning the remaining variables, their impact varies as a function of
the degree of energy poverty. The findings suggest that an augmentation
in income inequality (Gini) is positively correlated with energy poverty,
with regression coefficients spanning from 0.134 to 0.190, and the co-
efficient is greater for higher quantiles of poverty. This observation is
consistent with the findings of (Galvin, 2019). The results for prosperity
levels (GDP) also accord with prior studies [16,17], demonstrating that
an increase in national prosperity generally results in a reduction in
energy poverty, with regression coefficients ranging from − 0.887 for the
10th quantile to − 1.660 for the 90th quantile. In the context of eco-
nomic growth, the results are less unambiguous. Despite negative co-
efficients being obtained for all quantiles, significant relationships are
evidenced only for the uppermost quantiles, with coefficient values of
− 0.029 and − 0.036, respectively. This suggests that in nations where
energy poverty is pronounced, economic growth ameliorates the con-
ditions of groups contending with this form of exclusion. Comparable
results, i.e., significant coefficients for higher quantiles (beginning from
the 50th quantile), were identified for long-term unemployment. An
escalation in this indicator, with coefficients ranging from 0.105 for the
median to 0.252 for the 90th quantile, corresponds with an increase in
energy poverty in countries where it is relatively elevated. The signifi-
cant coefficients obtained for the share of renewable energy (Ren) are
significant across all quantiles, demonstrating an inverse relationship,
wherein an elevated share of renewable energy corresponds to lower
poverty levels. This relationship intensifies as the quantile of the energy
poverty distribution increases, with coefficients ranging from − 0.011
for the 10th quantile to − 0.031 for the 90th.

Table 15 presents the findings derived from Model 2, which in-
tegrates the proportion of renewable energy within electricity genera-
tion. The findings of this model largely corroborate those of Model 1,
particularly highlighting the pivotal role of social inequality and overall
economic prosperity in mitigating energy poverty. Analogous to Model
1, long-term unemployment is associated with poverty at higher quar-
tiles. Nevertheless, Model 2 exhibits its distinctiveness in two aspects. It
suggests that the extent of energy poverty is independent of economic
affluence, as the parameters across all quantiles lack statistical signifi-
cance. Furthermore, it reveals that augmenting the proportion of
renewable energy in electricity production is linked to poverty allevia-
tion only for elevated levels of this phenomenon, specifically for levels
exceeding the median, with an increasing correlation corresponding to
higher quantiles (regression coefficients range from − 0.504 for the
median to − 1.46 for the 90th quantile).

In Table 16, the results for Model 3 are presented. In this case, the
analysis includes the relationship between energy poverty and the share
of installed renewable energy capacity in the overall installed electricity

capacity. Installed capacity does not necessarily indicate electricity
production but rather refers to the level of investment. Therefore, high
installed capacity, in the case of low utilization due to weaker wind
conditions or less sunlight, signifies poor efficiency, high costs, and
relatively lower financial benefits. It may even contribute to the increase
of energy poverty. The obtained results from quantile regression suggest
that this assumption may hold true. The regression coefficient for RenEC
is positive for low quantiles (qtile_10, qtile_25), respectively 0.744 and
0.489 (both significant), and negative for the highest ones (qtile_75,

Table 13
Co-integration test results (the null hypothesis: No cointegration).

Model 1 Model 2 Model 3 Model 4 Model 5

Pedroni (1999, 2004)
Modified Phillips-Perron t 7.36 *** 6.97 *** 7.16*** 7.175*** 7.160***
Phillips–Perron t − 15.49*** − 16.32 *** − 20.26*** − 17.337*** − 24.482***
Augmented Dickey-Fuller t − 12.67 *** − 11.22 *** − 16.05*** − 11.563*** − 18.356***
Westerlund (2005)
Variance ratio − 0.16 0.52 − 0.38 − 0.355 − 0.361
Variance ratio, trend included 3.50*** 2.25** 4.13*** 3.953*** 3.907***

Note: *, **, *** indicate the level of significance at 10, 5, and 1 %, respectively. Pedroni (1999, 2004) and Westerlund (2005) tests are performed using the Stata
‘xtcointtest’ command.

Table 14
Model 1 (quantile regression).

qtile_10 qtile_25 qtile_50 qtile_75 qtile_90

Gini 0.135*** 0.139*** 0.143*** 0.149*** 0.152***

logGDP
− 0.887*** − 1.073*** − 1.260*** − 1.522*** − 1.660***

LN
− 0.033 0.036 0.105*** 0.201*** 0.252***

GDP GR
− 0.000 − 0.009 − 0.017 − 0.029* − 0.036*

Ren
− 0.011** − 0.016*** − 0.021*** − 0.027*** − 0.031***

Const
4.628*** 6.818*** 9.015*** 12.081*** 13.707***

Table 15
Model 2 (quantile regression).

qtile_10 qtile_25 qtile_50 qtile_75 qtile_90

Gini 0.120*** 0.123*** 0.131*** 0.140*** 0.147***

logGDP
− 0.870*** − 0.949*** − 1.108*** − 1.233*** − 1.342***

LN
0.005 0.040 0.109*** 0.197*** 0.258***

GDP GR
0.013 0.003 − 0.012 − 0.032 − 0.045

RenE
0.231 − 0.053 − 0.504*** − 1.070*** − 1.460***

Const
4.488*** 5.531*** 7.189*** 9.267*** 10.701***

Table 16
Model 3 (quantile regression).

qtile_10 qtile_25 qtile_50 qtile_75 qtile_90

Gini 0.123*** 0.129*** 0.137*** 0.149*** 0.159***

logGDP
− 0.995*** − 1.026*** − 1.076** − 1.152*** − 1.199***

LN
− 0.008 0.036 0.111*** 0.222*** 0.290***

GDP GR
0.022 0.012 − 0.005 − 0.031 − 0.047

RenEC
0.744*** 0.489** 0.062 − 0.576 − 0.968**

Const
5.417*** 5.875*** 6.643*** 7.790*** 8.495***
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qtile_90): − 0.576, − 0.968 – (the latter being statistically significant).
Parameters for the remaining variables are similar to those noted in
Models 2 and 3.

Table 17 investigates the relationship between energy poverty and
the proportion of wind and solar energy within overall electricity gen-
eration (RenWS), demonstrating the extent to which these renewable
sources are integrated into the existing energy mix. The regression co-
efficients for RenWS are negative across all quantiles, ranging from
− 0.360 at the 10th quantile to − 0.295 at the 90th quantile; however,
none of these coefficients are statistically significant. This indicates that
although a higher proportion of wind and solar energy in electricity
generation might be intuitively regarded as reducing energy poverty,
the quantile regression results do not support this assumption. It is
important to recognize that wind and solar energy sources are inherently
reliant on environmental conditions, such as solar irradiation and wind
availability, which can be highly variable. As a result, exclusive reliance
on these energy sources is challenging unless a nation has well-
developed sources (such as hydropower) to stabilize the energy sup-
ply. In countries lacking such infrastructure, maintaining a parallel
system based on fossil fuels is often essential to ensure continuous en-
ergy availability during periods of inadequate solar or wind energy
production. This requirement for a dual-system can hinder the imme-
diate benefits of renewable energy in reducing energy poverty and
potentially increase costs for energy consumers. Model 4 confirms that
social inequality, measured by the Gini Index, is a primary factor in
exacerbating energy poverty, with a significantly positive effect across
all quantiles. In countries facing high levels of energy deprivation, long-
term unemployment further worsens the issue, particularly in the upper
quantiles. Conversely, economic prosperity, as measured by logGDP,
significantly alleviates energy poverty, highlighting the critical need to
address inequalities and promote economic growth to effectively tackle
this challenge.

Table 18 elucidates the effect of wind and solar capacity as a pro-
portion of total electricity capacity (RenWSC) on energy poverty across
disparate quantiles. The model aims to discern the association between
the aggregated capacity of wind and solar—integral elements of the
energy transition—and energy poverty. Analogous to Model 4, these
outcomes do not demonstrate a beneficial impact of the energy transi-
tion, as assessed through the installed capacity of wind and solar energy,
in diminishing energy poverty. This consistency is further reinforced
when considering diverse geographical conditions and the potential of
wind and solar energy, factors that do not inherently lead to the gen-
eration of affordable electricity. The recurrent need for energy storage
emerges, with large-scale technical solutions remaining absent.
Crucially, the model reveals that while RenWSC fails to yield statistically
significant coefficients for any quantile, this indicator persists as a
pivotal component of the broader energy transition strategy within EU
countries. The parameters for other variables closely correspond with
those in preceding models, demonstrating significant, positive correla-
tions between income inequality (Gini) and energy poverty across all
quantiles, underscoring the vulnerability of energy-impoverished
households as income inequality escalates. Economic prosperity,
measured via log GDP, consistently exhibits a negative correlation with
energy poverty, implying that enhanced GDP levels are associated with
reductions in energy poverty across all quantiles, with values ranging

from − 0.833 at the 10th quantile to − 1.330 at the 90th quantile. The
significance of long-term unemployment (LN) is also pronounced in
higher quantiles, further highlighting that, notably in countries exhib-
iting elevated levels of energy poverty, increased long-term unemploy-
ment rates tend to aggravate the issue. Nevertheless, the RenWSC
variable, albeit not statistically significant, suggests a more intricate
relationship that may necessitate further examination within the context
of disparate dependencies on renewable resources and grid stability.

6. Conclusions

In this study, we proposed a synthetic indicator for energy poverty in
European countries and examined whether it is correlated with ad-
vancements in energy transitions. The synthetic variable for energy
poverty was obtained by combining information from six variables
which often appear separately as proxies for this type of deprivation.
Energy transitions was described by the share of renewable energies in
gross final energy consumption, renewable energies in electricity gen-
eration and renewable energies capacity in total installed electricity
capacity. Estimated panel quantile regression models considered
important predictors of macroeconomic origins for energy poverty
previously tested in literature.

The conducted research enabled the derivation of several conclu-
sions. The primary findings pertain to the role of energy transition in
addressing energy poverty. The investigation revealed that the effect of
energy transition on energy poverty is unequivocally dependent upon
the criteria employed in measuring the transition. When energy transi-
tion is assessed by the proportion of zero-emission sources in gross final
energy consumption or the share of low-emission sources in electricity
production or installed capacity, its influence on alleviating energy
poverty is anticipated to be positive. Conversely, when the focus is
confined to low-emission sources that have experienced swift growth in
the past decade, notably wind and solar energy, their effect on dimin-
ishing energy poverty appears less significant. An energy transition
predicated solely on weather-dependent sources presents challenges
concerning social costs, potentially hindering public acceptance. This
underscores the imperative of constructing inclusive support mecha-
nisms within energy transitions to aid vulnerable demographics and
avert their marginalization.

Moreover, the study underscores the significance of macroeconomic
factors in shaping energy poverty. Income inequality emerged as a
substantial factor positively correlated with energy poverty, whereas
economic wealth exhibited a negative correlation. In nations where
energy poverty is more prevalent, prolonged unemployment was iden-
tified as an exacerbating factor. Furthermore, economic wealth
demonstrated no significant impact on energy poverty, suggesting that
the benefits and costs of economic transformations are not uniformly
distributed among those experiencing this deprivation.

Our analysis is subject to certain limitations predominantly associ-
ated with the data employed for estimating energy poverty. This subject
is extensively addressed in the literature section and is characterized by
ambiguity. While our methodology is deemed robust, it would be
significantly enhanced by the availability of data encompassing all di-
mensions of energy poverty. Currently, such comprehensive data for
international comparisons is unavailable.

Table 17
Model 4 (quantile regression).

qtile_10 qtile_25 qtile_50 qtile_75 qtile_90

Gini 0.136*** 0.140*** 0.146*** 0.155*** 0.159***
logGDP − 0.784** − 0.863** − 0.985*** − 1.156*** − 1.237***

LN 0.004 0.052 0.124*** 0.226*** 0.275***
GDP GR 0.001 − 0.003 − 0.009 − 0.018 − 0.022
RenWS − 2.202 − 1.934 − 1.525 − 0.951 − 0.679
Const 3.361 4.246*** 5.600*** 7.500*** 8.401***

Note: ***p < 0.01, **p < 0.05, *p < 0.1.

Table 18
Model 5 (quantile regression).

qtile_10 qtile_25 qtile_50 qtile_75 qtile_90

Gini 0.129*** 0.134*** 0.140*** 0.149*** 0.154***
logGDP − 0.833*** − 0.929*** − 1.045** − 1.237*** − 1.330***

LN − 0.001 0.053 0.118*** 0.227*** 0.279***
GDP GR 0.006 − 0.001 − 0.008 − 0.020 − 0.027
RenWSC − 0.360 − 0.348 − 0.332 − 0.307 − 0.295
Const 3.937* 5.003 6.304** 8.461*** 9.504***

Note: ***p < 0.01, **p < 0.05, *p < 0.1.
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S. Śmiech et al. Renewable and Sustainable Energy Reviews 211 (2025) 115311 

12 

http://refhub.elsevier.com/S1364-0321(24)01037-2/sref1
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref1
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref2
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref2
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref2
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref3
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref3
https://www.worldbank.org/en/research/brief/inflation-database
https://www.worldbank.org/en/research/brief/inflation-database
https://www.macrotrends.net/global-metrics/countries/EMU/euro-area/inflation-rate-cpiyet
https://www.macrotrends.net/global-metrics/countries/EMU/euro-area/inflation-rate-cpiyet
http://www.annualreviews.org
https://www.nature.com/articles/s41893-018-0204-z
https://www.nature.com/articles/s41893-018-0204-z
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref7
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref7
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref8
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref8
https://www.tandfonline.com/doi/abs/10.1080/14631377.2016.1242257
https://www.tandfonline.com/doi/abs/10.1080/14631377.2016.1242257
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref10
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref10
https://doi.org/10.1016/j.rser.2015.03.013
https://doi.org/10.1016/j.rser.2015.03.013
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref12
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref12
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref12
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref13
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref13
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref14
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref14
https://www.tandfonline.com/doi/abs/10.1080/13549839.2024.2303456
https://www.tandfonline.com/doi/abs/10.1080/13549839.2024.2303456
https://journals.sagepub.com/doi/full/10.1177/1420326X17699260
https://journals.sagepub.com/doi/full/10.1177/1420326X17699260
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref17
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref17
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref17
https://www.tandfonline.com/doi/abs/10.1080/00036846.2018.1524975
https://www.tandfonline.com/doi/abs/10.1080/00036846.2018.1524975
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref19
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref19
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref20
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref20
https://www.mdpi.com/2071-1050/5/5/2060/htm
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref22
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref22
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref23
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref23
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref23
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref23
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref24
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref24
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref24
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref25
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref25
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref26
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref26
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref27
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref27
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Energy-poverty-crisis-and-austerity-in/9921860592801341
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Energy-poverty-crisis-and-austerity-in/9921860592801341
https://doi.org/10.1016/j.erss.2019.101255
https://doi.org/10.1016/j.erss.2019.101255
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref30
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref30
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref31
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref31
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref32
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref32
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref33
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref33
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref33
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref34
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref34
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref34
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref35
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref35
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref36
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref36
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref36
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref37
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref37
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref38
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref38
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref39
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref39
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref40
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref40
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref41
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref41
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref41
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref41
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref42
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref42
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref43
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref43
https://link.springer.com/article/10.1007/s11205-017-1832-9
https://link.springer.com/article/10.1007/s11205-017-1832-9
https://link.springer.com/article/10.1007/s11205-016-1294-5
https://link.springer.com/article/10.1007/s11205-016-1294-5
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref46
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref47
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref47
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref48
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref48
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref49
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref49
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref50
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref50
http://refhub.elsevier.com/S1364-0321(24)01037-2/sref50


[51] Kelly JA, Clinch JP, Kelleher L, Shahab S. Enabling a just transition: a composite
indicator for assessing home-heating energy-poverty risk and the impact of
environmental policy measures. Energy Pol 2020 Nov 1;146:111791.

[52] Thomson H, Snell C. Quantifying the prevalence of fuel poverty across the
European Union. Energy Pol 2013 Jan 1;52:563–72.

[53] Phillips PCB, Sul D. Dynamic panel estimation and homogeneity testing under cross
section dependence. Econom J [Internet] 2003 Jun 1;6(1):217–59. https://doi.
org/10.1111/1368-423X.00108.

[54] Pesaran MH. Testing weak cross-sectional dependence in large panels. Econom Rev
[Internet] 2015 May 22;34(6–10):1089–117 [cited 2024 Mar 25], https://www.
tandfonline.com/doi/abs/10.1080/07474938.2014.956623.

[55] Hashem Pesaran M, Yamagata T. Testing slope homogeneity in large panels.
J Econom 2008 Jan 1;142(1):50–93.

[56] Pesaran MH. A simple panel unit root test in the presence of cross-section
dependence. Journal of Applied Econometrics [Internet] 2007 Mar 1;22(2):
265–312. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/
jae.951.

[57] Pedroni P. Panel cointegration: asymptotic and finite sample properties of pooled
time series tests with an application to the PPP hypothesis. Econ Theory [Internet]
2004 Jun;20(3):597–625 [cited 2024 Mar 25], https://www.cambridge.org/cor
e/journals/econometric-theory/article/abs/panel-cointegration-asymptotic-and-
finite-sample-properties-of-pooled-time-series-tests-with-an-application-to-th
e-ppp-hypothesis/F31DA49F3109F20315298A97EB46A47E.

[58] Westerlund J. New simple tests for panel cointegration. Econom Rev [Internet]
2005;24(3):297–316. Available from: https://www.tandfonline.com/doi/abs/10.
1080/07474930500243019.
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