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Abstract: This research investigates the application of machine learning models to optimise renewable
energy systems and contribute to achieving Net Zero emissions targets. The primary objective is
to evaluate how machine learning can improve energy forecasting, grid management, and storage
optimisation, thereby enhancing the reliability and efficiency of renewable energy sources. The
methodology involved the application of various machine learning models, including Long Short-
Term Memory (LSTM), Random Forest, Support Vector Machines (SVMs), and ARIMA, to predict
energy generation and demand patterns. These models were evaluated using metrics such as
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Key findings include a 15%
improvement in grid efficiency after optimisation and a 10–20% increase in battery storage efficiency.
Random Forest achieved the lowest MAE, reducing prediction error by approximately 8.5%. The
study quantified CO2 emission reductions by energy source, with wind power accounting for a
15,000-ton annual reduction, followed by hydropower and solar reducing emissions by 10,000 and
7500 tons, respectively. The research concludes that machine learning can significantly enhance
renewable energy system performance, with measurable reductions in errors and emissions. These
improvements could help close the “ambition gap” by 20%, supporting global efforts to meet the
1.5 ◦C Paris Agreement targets.

Keywords: machine learning; renewable energy; net zero; energy forecasting; grid optimization; CO2

emissions reduction

1. Introduction

The pressing imperative to tackle climate change has dominated global discourse, with
growing acknowledgement of the need to shift toward sustainable practices in all societal
sectors [1,2]. A primary objective arising from these conversations is attaining Net Zero
emissions. This objective is essential for alleviating the detrimental impacts of climate change,
representing the equilibrium of greenhouse gas emissions with removal technologies to
guarantee that net emissions to the atmosphere are effectively zero [3,4]. Countries, industries,
and individuals strive to achieve Net Zero ambitions, with breakthrough technologies like
machine learning recognised as essential facilitators in attaining these objectives [5–7]. Machine
learning, a branch of artificial intelligence (AI), offers robust tools for analysing extensive
information, generating precise predictions, and optimising intricate systems, elements that
are essential in the energy sector [8–10].

This study examines the role of machine learning in expediting the attainment of Net
Zero emissions through optimising renewable energy systems [11,12]. Machine learning
enables energy generation, storage, and management transformation, diminishing depen-
dence on fossil fuels and decreasing overall carbon footprints [13,14]. In climate change
mitigation, machine learning facilitates the development of highly efficient energy systems,
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enables precise forecasts of energy demands and generation, and ultimately enhances
the integration of renewable energy sources into the global grid [15,16]. The subsequent
sections examine Net Zero’s significance and machine learning’s revolutionary potential in
renewable energy systems [17,18].

Net Zero denotes the equilibrium between the quantity of greenhouse gases emitted
and the volume extracted from the atmosphere [19,20]. This equilibrium is essential for
curbing global warming and alleviating its consequences, including elevated sea levels,
heightened occurrence of extreme weather phenomena, and biodiversity loss [21,22]. The
Net Zero concept has garnered substantial global attention since the Paris Agreement was
signed in 2015, wherein almost every government pledged to restrict global warming to
below 2 ◦C, with aspirations to limit the rise to 1.5 ◦C [23,24]. These objectives highlight
the necessity for significant decreases in greenhouse gas emissions by 2050, if not before,
for numerous countries [25,26].

Attaining Net Zero is crucial for stabilising world temperatures and preventing catas-
trophic climatic outcomes. The persistent utilisation of fossil fuels and the consequent
carbon emissions have intensified the climate catastrophe, rapidly increasing global temper-
atures [27,28]. Climate experts assert that to restrict global warming to 1.5 ◦C, a significant
reduction in emissions is necessary by 2030, alongside the attainment of Net Zero by
2050 [29,30]. These reductions need not only the mitigation of emissions from the energy,
transportation, and industrial sectors but also the augmentation of natural and technology
strategies for atmospheric carbon removal, including reforestation and carbon capture and
storage (CCS) [31,32].

Governments, corporations, and organisations are pledging to achieve Net Zero
emissions. Over 140 nations, accounting for over 90% of worldwide emissions, have
established Net Zero objectives [33,34]. Achieving these targets necessitates substantial
alterations in energy production, including transitioning from a reliance on fossil fuels to
renewable energy sources such as wind, solar, and hydropower [35,36]. These modifications
are both essential and urgent as the impacts of climate change intensify each year. The shift
to renewable energy is vital to attaining Net Zero, as it directly targets the primary source
of global greenhouse gas emissions: the energy sector [37,38].

Notwithstanding the high objectives and substantial global commitments, the journey
to Net Zero has obstacles. Numerous nations face challenges expanding and assimilating
renewable energy systems into current infrastructure [39,40]. The sporadic characteristics
of renewable energy sources, like wind and solar power, pose further difficulties in en-
suring a reliable energy supply [41,42]. Moreover, economic and political impediments
and the necessary extensive infrastructural modifications provide significant challenges.
Nonetheless, the emergence of new technologies, such as machine learning, enables the
resolution of these difficulties [43,44].

The renewable energy market can be revolutionised by machine learning, a subset of
artificial intelligence, which provides advanced analytical skills to maximise energy gener-
ation, delivery, and consumption [45,46]. The core idea of machine learning is its ability
to analyse large datasets, identify patterns, and produce predictions or recommendations
based on that analysis [47–49]. These capabilities can enhance energy systems through
energy generation forecasting, demand management, and grid operation optimisation of
renewable energy [50,51].

Variability constitutes a fundamental challenge to renewable energy. Wind turbines
function only in the presence of wind, and solar panels produce electricity exclusively
during sunlight exposure [52,53]. The sporadic nature of the energy supply makes it difficult
to ensure a stable and reliable provision. This is the domain in which machine learning
is utilised. By analysing climatic patterns, machine learning algorithms can predict the
volume and time of energy renewable sources produce [54,55]. This information is crucial
for grid operators since it allows them to balance supply and demand more efficiently,
ensuring grid stability and optimising renewable energy generation [56,57].



Atmosphere 2024, 15, 1250 3 of 20

Machine learning can enhance energy storage systems and forecast energy generation.
In renewable energy systems, battery storage is crucial for retaining surplus energy during
high-production phases and releasing energy during low-production phases [58,59]. By
analysing energy production and consumption patterns, machine learning algorithms
may identify the optimal times for battery charging and discharging, thus minimising
energy loss and improving overall efficiency [60,61]. This optimisation enhances renewable
energy’s reliability while decreasing prices, making the transition to a low-carbon energy
system more economical.

Moreover, machine learning can be utilised to predict energy demand and ensure
the efficient integration of renewable energy sources into the grid. Grid operators may
strategically plan by precisely predicting demand, ensuring that the correct quantity of
energy is generated and distributed to satisfy customer needs without excess production
or dependence on fossil fuels as a contingency [62,63]. This leads to less emissions and
improved sustainability of energy systems. Machine learning algorithms can discover
grid inefficiencies and propose improvements that optimise renewable energy integration,
minimise energy loss, and enhance performance [64].

Machine learning fulfils a role that exceeds mere operational efficiency. It can also be
utilised to enhance the design of renewable energy infrastructure by identifying the optimal
places for placing solar panels or wind turbines [65,66]. Machine learning algorithms can
determine the optimal sites for renewable energy installations by assessing environmental
and geographical data, ensuring that investments in renewable energy infrastructure
yield maximum returns [67,68]. Moreover, machine learning can determine the economic
viability of renewable energy initiatives, aiding policymakers and investors in making
educated decisions about which projects to undertake [69,70].

Machine learning can significantly aid in achieving Net Zero by optimising renewable
energy systems to enhance their efficiency, reliability, and cost-effectiveness [70]. Machine
learning will handle the difficulties of variability and integration of renewable energy into the
grid, serving as an essential instrument in the global effort to cut carbon emissions and transition
to renewable energy sources [71,72]. Machine learning can aid the transition to a sustainable
energy future through predictive modelling, demand forecasting, and system optimisation.

This research aims to explore the potential of machine learning in optimising renewable
energy systems to support the global drive toward Net Zero emissions. Specifically, this
study aims to improve energy generation forecasting, grid management, and energy storage
through advanced machine learning techniques. By leveraging models like Long Short-
Term Memory (LSTM), Random Forest, and Support Vector Machines (SVMs), this study
seeks to enhance the accuracy of energy predictions, reduce operational inefficiencies, and
improve the integration of renewable energy sources such as wind, solar, and hydropower
into the grid. This research also aims to quantify the environmental impact of these
optimisations, particularly in terms of CO2 emissions reductions. Ultimately, this study
intends to provide actionable insights for policymakers and energy stakeholders on how
machine learning can be a key enabler in accelerating the transition to a sustainable, carbon-
neutral future and achieving global climate targets.

2. Methodology

The use of machine learning techniques in renewable energy systems is a crucial
component of this research. The process encompasses gathering and processing pertinent
data, selecting suitable machine learning models and algorithms, and assessing these
models to evaluate their efficacy in attaining Net Zero objectives.

2.1. Data Collection and Preparation

The initial phase in employing machine learning to optimise renewable energy in-
volves collecting and preparing high-quality data. This procedure entails identifying,
cleansing, and transforming data to ensure its readiness for analysis by machine learning
models. Weather data, encompassing historical and real-time information on factors such as
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solar irradiance, wind speed, and temperature, is essential for predicting energy production
from renewable sources like solar panels and wind turbines. Sources comprise national
meteorological services, satellite data, and weather stations. Data on energy consumption
from residential, commercial, and industrial sectors offer insights into usage trends and
aids in formulating demand-side management strategies. Data regarding energy flow, load
distribution, and grid efficiency are crucial for enhancing grid operations. Historical data
from renewable energy systems, such as solar and wind farms, are used to train machine
learning models to forecast future energy generation. Financial information about energy
generation, storage, and grid operations aids in the economic assessment of renewable
energy initiatives.

2.2. Data Sanitisation and Preparation

After data collection, it must be sanitised to guarantee consistency and reliability.
Missing values in the dataset are managed by interpolation, imputation, or eliminating
incomplete entries. Variables such as energy demand, temperature, and wind speed are
standardised to ensure comparability, enhancing machine learning models’ efficacy. New
attributes are extracted from the existing dataset to improve model precision [72]. Temporal
characteristics such as seasonality or time of day are essential for predicting energy demand.
The dataset is partitioned into three subsets: a training set for model training, a validation
set for hyperparameter tuning, and a testing set for ultimate performance evaluation.
Figure 1 shows a world map illustrating various countries’ progress toward achieving
Net Zero emissions. Countries like Canada, the USA, Germany, China, India, Brazil,
and Australia are highlighted. The colour gradient indicates different levels of progress:
dark blue represents countries that have made significant progress, while lighter shades
represent those with targets in progress or merely set. Figure 1 contributes to the research
by visually emphasising the global efforts toward Net Zero. It underlines the novelty of
machine learning’s role in optimising renewable energy systems, helping countries meet
their targets through improved efficiency and emission reduction predictions.
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2.3. Machine Learning Models and Algorithms

Once the data is prepared, selecting appropriate machine learning models and algorithms
is the next step. The choice of models depends on the specific tasks within renewable energy
systems, such as energy forecasting, demand management, and grid optimisation. Predictive
models are essential for forecasting energy generation and demand. Autoregressive Integrated
Moving Average (ARIMA) is a time series forecasting model used to predict energy generation
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based on historical data. Long Short-Term Memory (LSTM) networks are a deep learning
model that captures long-term dependencies in time series data. It is suitable for energy
forecasting based on patterns such as solar irradiance or wind speed fluctuations. Random
Forest Regression is a machine learning algorithm used for energy demand prediction by
aggregating the outputs of multiple decision trees based on different features.

2.3.1. Optimisation Models

Optimisation models are used for energy storage management, grid efficiency, and
renewable energy infrastructure placement. Linear programming (LP) is a mathematical
technique to optimise energy dispatch between renewable sources and storage systems.
Reinforcement Learning (RL) is an approach where an agent learns optimal actions to
manage energy storage by interacting with the environment (e.g., the energy grid). RL
is beneficial for demand response management, where real-time decisions must be made
based on energy consumption and generation patterns. Genetic Algorithms (GA) is an
evolutionary algorithm that finds optimal locations for renewable energy installations (e.g.,
solar or wind farms) by simulating the process of natural selection.

2.3.2. Anomaly Detection Models

Machine learning algorithms are also used for predictive maintenance, identifying
potential faults in renewable energy systems before they occur. Support Vector Machines
(SVMs) classify normal and abnormal behaviour in energy systems, helping to prevent
downtime in infrastructure such as wind turbines and solar panels. Autoencoders are
neural networks used to detect anomalies in energy consumption or production patterns
by comparing predicted outputs with actual outcomes.

2.4. Evaluation Metrics

The final step in the methodology is evaluating the performance of the machine
learning models using appropriate metrics. The selection of evaluation metrics depends on
the nature of the task, whether it is regression, classification, or optimisation.

2.4.1. Regression Metrics

For models that predict continuous variables like energy generation or consumption,
common evaluation metrics include the following:

Mean Absolute Error (MAE) measures the average magnitude of errors between
predicted and actual values, providing a straightforward indication of prediction accuracy.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (1)

where yi is the actual value and ŷi is the predicted value.
Root Mean Squared Error (RMSE) is a widely used metric that penalises larger errors

more heavily, giving insight into how well the model performs under extreme conditions.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

Mean Squared Error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)
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R-squared (R2) measures the proportion of variance in the dependent variable that is
predictable from the independent variables. It is helpful in regression models to assess how
well the model fits the data.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

where y is the mean of the observed data.
By fitting LSTM and ARIMA models to the same energy data, their performance can

be compared using evaluation metrics such as MAE and RMSE and the results can be
visualised. Typically, LSTM models may perform better for complex time series with long-
term dependencies, while ARIMA works well with more straightforward, linear trends
and seasonality.

2.4.2. Classification Metrics

The following metrics and the proportion of correct predictions out of total predictions
are standard for classification models used in anomaly detection or binary decision-making.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

TP and TN are true positives and negatives, and FP and FN are false positives
and negatives.

Precision, Recall, and F1-Score: Precision measures the proportion of true positives
among all predicted positives, while recall measures the proportion of true positives among
actual positives. The F1-Score is the harmonic mean of precision and recall, providing a
balanced evaluation.

F1 = 2 × Precision × Recall
Precision + Recall

(6)

2.4.3. Optimisation Metrics

For optimisation tasks, metrics such as total cost reduction, grid efficiency improve-
ment, or energy storage utilisation are key. The financial viability of the model’s output can
be evaluated by comparing energy savings against energy storage and generation costs.
Measuring the ratio of energy used effectively to the total energy generated helps assess
the impact of machine learning optimisations on reducing waste.

3. Experimental Results and Analysis

This section presents the experimental findings and analysis derived from applying ma-
chine learning techniques to renewable energy systems. The analysis focuses on understanding
the dynamics of these systems, evaluating the predictive performance of various machine
learning models, and deriving actionable insights for achieving Net Zero emissions.

3.1. Analysis of Renewable Energy Systems

The primary objective of analysing renewable energy systems is to uncover patterns
and trends that inform decision-making processes and optimise energy generation, storage,
and consumption. By leveraging machine learning algorithms, this study examines histori-
cal data from renewable energy sources, including solar and wind, to identify the temporal
and spatial variations in energy production and consumption.

3.1.1. Temporal and Spatial Variations in Energy Generation

The analysis revealed distinct temporal patterns in energy generation from renewable
sources. Solar energy generation exhibited substantial daily and seasonal variations, with
peak production during midday and in the summer months. Conversely, wind energy
generation was more volatile, with fluctuations driven by changing wind speeds and
weather conditions. Machine learning models effectively captured these patterns, enabling
accurate energy output prediction over different time horizons.
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3.1.2. Energy Consumption Patterns

On the demand side, energy consumption was found to vary significantly across differ-
ent sectors and regions. Residential energy demand strongly correlated with temperature,
peaking during extreme weather conditions when heating or cooling systems were used.
Commercial and industrial demand was more consistent but exhibited peaks during busi-
ness hours. By identifying these consumption patterns, machine learning models provided
critical insights for demand-side management, allowing for more efficient distribution of
renewable energy.

3.1.3. Grid Efficiency and Energy Storage

Integrating renewable energy into the grid posed challenges due to its intermittent
nature. The analysis showed that optimising energy storage systems was crucial for balanc-
ing supply and demand. By leveraging predictive models, it was possible to determine
the optimal times for charging and discharging batteries, thereby reducing energy waste
and improving overall grid efficiency. The analysis also revealed inefficiencies in grid
management, such as energy losses during transmission, which the machine learning
models addressed.

3.2. Predictive Performance of Machine Learning Models

Evaluating the predictive performance of machine learning models is essential to
assess their suitability for optimising renewable energy systems. The models used in
this study were evaluated based on their accuracy in forecasting energy generation and
consumption and their ability to maximise energy storage and grid management.

3.2.1. Energy Generation Forecasting

Machine learning models such as a Long Short-Term Memory (LSTM) network and
Random Forest were used to forecast energy generation from solar and wind sources. The
performance of these models was measured using metrics such as Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE). The LSTM model outperformed traditional time series
models (e.g., ARIMA) in capturing complex temporal dependencies in energy generation. The
LSTM model had an MAE of 5.3% and an RMSE of 8.1% for solar energy forecasting. Random
Forest performed well for wind energy generation, with an MAE of 6.2% and an RMSE of
7.9%, due to its ability to handle the non-linear nature of wind speed data. The ability of these
models to predict energy generation with high accuracy is critical for ensuring the reliability
of renewable energy systems and reducing dependence on fossil fuels.

3.2.2. Energy Demand Prediction

Machine learning models such as Support Vector Machines (SVMs) and Gradient
Boosting were evaluated regarding energy demand forecasting. The SVM model had
a predictive solid performance, with an R-squared value of 0.87 for residential energy
demand and an RMSE of 3.5% for commercial demand. Gradient Boosting further improved
accuracy, with an RMSE of 2.9% for predicting peak demand times in the industrial sector.
The accuracy of these demand-side predictions is essential for balancing the energy grid
and preventing energy shortages or excesses.

3.2.3. Grid and Storage Optimisation

A Reinforcement Learning (RL) model was employed for energy storage optimisation
to manage battery charge/discharge cycles. The RL model demonstrated a 15% improve-
ment in overall storage efficiency compared to rule-based approaches. This optimisation
reduced energy losses and increased the proportion of renewable energy used within
the grid. Additionally, the model successfully predicted grid inefficiencies, allowing for
targeted improvements in grid operations.
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3.3. Insights for Achieving Net Zero Targets

Applying machine learning techniques in renewable energy systems provides valuable
insights for achieving Net Zero targets. These insights, derived from the experimental
results, highlight opportunities for optimising energy systems and reducing greenhouse
gas emissions.

3.3.1. Optimisation of Renewable Energy Integration

The findings demonstrate that machine learning models can optimise the integration
of renewable energy into the grid by predicting energy generation with high accuracy and
managing energy storage more efficiently. By accurately forecasting solar and wind energy
production, stakeholders can better plan for high and low-generation periods, reducing
the need for backup fossil fuel-based energy sources. This contributes directly to lowering
carbon emissions and increasing the share of renewable energy in the total energy mix.

3.3.2. Improving Energy Efficiency

The predictive capabilities of machine learning models allow for identifying inefficien-
cies in energy consumption and distribution. For instance, the models identified patterns
of energy wastage during non-peak hours, leading to recommendations for demand-side
management strategies such as load shifting and energy conservation measures. These
strategies have the potential to improve energy efficiency significantly, reducing overall
energy consumption and carbon footprints.

3.3.3. Enhanced Decision-Making for Policymakers and Investors

Machine learning models also offer insights into the economic viability of renewable
energy projects. By predicting the long-term financial benefits of renewable energy invest-
ments, the models support data-driven decision-making for policymakers and investors.
Furthermore, the models’ ability to quantify the environmental impact, such as the re-
duction in CO2 emissions, helps stakeholders set realistic targets for renewable energy
deployment and track progress toward Net Zero.

3.3.4. Scaling Machine Learning for Global Impact

One of the key takeaways from this research is that machine learning techniques can
be scaled to address global renewable energy challenges. Machine learning can provide
more accurate forecasts and optimisations by leveraging data from multiple sources and
refining models over time, further accelerating the global transition to Net Zero. This
research highlights the importance of collaboration between governments, industry, and
academia to ensure the widespread adoption of these technologies.

The experimental results underscore the transformative potential of machine learning
in optimising renewable energy systems and advancing the global effort to achieve Net
Zero emissions. Machine learning offers practical solutions to many challenges facing the
renewable energy sector through accurate energy forecasting, efficient grid management,
and improved energy storage. These insights pave the way for further research and
development in the field, aiming to create a sustainable and carbon-neutral future.

4. Results and Discussion

Integrating machine learning (ML) into renewable energy systems presents a promis-
ing approach to achieving Net Zero emissions targets. Our research explored machine
learning models for energy generation forecasting, grid management, and optimising en-
ergy demand. Applying machine learning techniques, such as ARIMA and LSTM models,
demonstrated their potential in accurately forecasting energy generation and demand while
improving grid load distribution efficiency [64,65]. However, challenges remain in scaling
and implementing these models on a broader scale, and there are multiple implications for
the future of renewable energy and Net Zero objectives. Figure 2 contains four subplots
illustrating machine learning applications in renewable energy forecasting and optimisa-
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tion. Figure 2a: The line chart compares actual versus predicted energy generation over
time, showcasing the accuracy of machine learning models in predicting energy output.
Figure 2b: The bar chart displays the importance of features, with wind speed and solar
irradiance being the most critical factors in energy generation prediction. Figure 2c: The
graph shows battery charge levels, highlighting the optimal times for charging and dis-
charging, improving energy storage management. Figure 2d: The 3D plot visualises the
relationship between energy demand, energy generated, and energy stored, facilitating
grid optimisation. These visualisations demonstrate the novelty of machine learning in
renewable energy systems, enabling accurate predictions, efficient storage management,
and real-time optimisation, directly contributing to achieving Net Zero emissions targets.
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itive rate (TPR), indicating compelling model predictions. Figure 3 highlights machine 
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Figure 2. Energy generation forecasting. (a) Time series plot of energy generation is predicted
with actual energy generation over time using machine learning models such as ARIMA or LSTM;
(b) feature importance for energy forecasting models that show the importance of various features
used in machine learning models; (c) energy storage optimisation charge and discharge cycles of
batteries optimised using machine learning models; (d) optimisation surface plot of energy storage
based on forecasted generation and consumption.
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4.1. Implications of Findings

The results of this study highlight the pivotal role that machine learning can play
in the future of energy systems. Accurate forecasting of renewable energy generation
from sources like solar and wind is critical for efficient energy management. Our analysis
showed that machine learning models can predict energy generation and demand with
high precision, reducing the unpredictability associated with renewable sources [66].

For instance, using machine learning models, the time series plot of energy generation
forecasting showed a close match between actual and predicted energy generation values.
This accurate forecasting enables energy providers to better plan for periods of high or
low generation, helping to prevent over-reliance on fossil fuel energy during times of low
renewable output [66,67]. It also allows for more accurate predictions of energy demand,
reducing the risk of energy shortages and minimising wasteful energy production.

Figure 3 presents four subplots related to grid optimisation and energy generation
potential. Figure 3a: A line graph showing grid efficiency before and after optimisation. The
blue dots represent improved efficiency after optimisation using machine learning models,
increasing from about 70% to 85%. Figure 3b: A geospatial map displaying different regions
and their energy potential across North America, with colour codes indicating levels of
potential. Figure 3c: A bar chart of various regions’ energy generation potential shows
Region 6’s highest potential. Figure 3d: A receiver operating characteristic (ROC) curve
that evaluates the performance of machine learning models with a high actual positive rate
(TPR), indicating compelling model predictions. Figure 3 highlights machine learning’s
effectiveness in optimising grid efficiency, identifying prime regions for energy generation,
and improving prediction accuracy, which is essential for Net Zero initiatives.

The confusion matrix analysis showed that machine learning models can effectively
classify high- and low-energy demand scenarios, but false positives and negatives reveal
improvement areas. In high-demand situations, false negatives (under-predictions) could
lead to insufficient energy supply, while false positives (over-predictions) could result in
excess energy generation, increasing operational costs. Optimising the balance between
prediction accuracy and the robustness of these models will be critical to their future
success. Another key finding was the feature importance analysis, which demonstrated
that factors such as wind speed, solar irradiance, and temperature significantly impact the
accuracy of energy generation models [68,69]. This suggests that investments in improving
the accuracy and availability of these data inputs could further enhance the efficiency of
machine learning models in energy systems. Figure 4 presents four subplots that depict
various aspects of machine learning and renewable energy project performance. Figure 4a:
A line graph showing the failure probability over time, indicating an increasing likelihood of
failure as time progresses. Figure 4b: Net Present Value (NPV) plot for three different project
scenarios over ten years. Scenario 3 shows the highest growth, indicating superior project
profitability. Figure 4c: A histogram showing the frequency distribution of the internal
rate of return (IRR) across different projects, with most projects achieving IRRs between
5% and 15%. Figure 4d: A learning curve displaying training and validation accuracy
over 20 epochs, demonstrating model performance improvement as the number of epochs
increases. This Figure illustrates how machine learning models can predict project risks,
enhance financial performance assessment, and optimise accuracy in renewable energy
projects, supporting more informed decision-making for Net Zero initiatives.
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Figure 3. (a) Scatter plot of grid efficiency over time compares grid efficiency before and after
applying machine learning optimisation models; (b) geospatial map of renewable energy installations
that shows optimal locations for solar panels or wind turbines identified through machine learning
algorithms; (c) renewable energy potential by region compares renewable energy generation potential
across different areas based on machine learning predictions; (d) receiver operating characteristic
(ROC) curve showing performance of machine learning models in predicting failures in renewable
energy systems.

4.2. Challenges in Implementing Machine Learning for Net Zero

While machine learning offers substantial benefits in advancing renewable energy
systems, several challenges must be addressed to harness its potential fully. One of the most
significant challenges in implementing machine learning models for energy systems is the
availability of high-quality, real-time data. Machine learning models require large datasets
to train and achieve optimal performance. Inconsistent or incomplete data, especially from
remote or less technologically developed regions, can significantly impact the model’s
accuracy. Additionally, integrating various data types, such as weather data, energy
consumption patterns, and grid status from different sources, presents a significant obstacle
to achieving seamless and effective forecasting. Figure 5 includes four subplots that
explore the impact of machine learning models and renewable energy sources on carbon
emission reduction. Figure 5a: A bar chart comparing the Mean Absolute Error (MAE)
across different machine learning models (ARIMA, LSTM, Decision Trees, Random Forest,
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and SVM). Random Forest performs the best with the lowest MAE, indicating superior
accuracy in energy forecasting. Figure 5b: A bar chart showing the CO2 emissions reduced
by different energy sources, with wind and hydropower contributing the most to CO2
reduction. Figure 5c: A line graph showing CO2 emissions before and after using different
energy sources, highlighting a significant drop in emissions from fossil fuels after renewable
integration. Figure 5d: A stacked area graph depicting the transition in energy mix from
fossil fuels to renewable sources over time, with a notable increase in wind, solar, and
geothermal energy by 2025. This Figure underscores the value of machine learning in
optimising energy systems, improving forecasting accuracy, and significantly reducing
greenhouse gas emissions.
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Figure 4. (a) Failure rate prediction of equipment failure probability over time-based on machine
learning models; (b) Net Present Value (NPV) analysis graph. The projected NPV of renewable
energy projects over time, based on different machine learning-generated scenarios; (c) internal rate
of return (IRR) distribution histogram values for various renewable energy investments based on
machine learning risk assessments; (d) learning curve for ML model training of neural networks
during training on renewable energy data.
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Figure 5. (a) Comparison of Mean Absolute Error (MAE) of different machine learning models for
energy generation forecasting; (b) carbon emissions reduction comparing CO2 emissions reduction
from other renewable energy sources predicted using machine learning models; (c) line graph of CO2

emissions from various energy sources before and after machine learning optimisations; (d) stacked
area graph of global energy mix transition from fossil fuels to renewable energy sources over time,
aided by machine learning optimisations.

System complexity and scalability help renewable energy systems, which are inher-
ently complex and unpredictable. Solar and wind power generation depend highly on
weather conditions, which can change rapidly and unpredictably. Additionally, the increas-
ing integration of renewable sources into national and international grids adds complexity,
making it challenging for machine learning models to scale across regions and respond to
different types of renewable energy infrastructures [70,71]. This complexity makes it diffi-
cult for machine learning models to generalise across different systems without extensive
tuning and customisation for each location or grid.

Computational Resources implementing machine learning models at scale requires sig-
nificant computational resources. Energy companies may need to invest heavily in a high-
performance computing infrastructure to process large amounts of data in real-time, which
is necessary for predictive models to provide actionable insights. The costs associated with
implementing machine learning infrastructure may be prohibitive for smaller energy providers.
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Integration with Existing Systems many energy systems still rely on legacy infrastruc-
ture, which may not be compatible with modern machine learning-based solutions. Updat-
ing or integrating these systems with new technology can be costly and time-consuming.
Furthermore, ensuring that machine learning systems integrate seamlessly into existing
energy market mechanisms and regulations poses another challenge. Figure 6 contains two
subplots. Figure 6a: A line graph showing the energy efficiency and cost relationship. As
investment increases, energy efficiency rises, indicating diminishing returns after a certain
threshold. Figure 6b shows a sensitivity analysis bar chart showing factors like wind speed
and solar irradiance most significantly affect energy efficiency. This Figure highlights the
cost-benefit analysis of renewable energy investments and demonstrates the importance
of critical environmental factors. It showcases machine learning’s potential in optimising
energy systems, providing valuable insights for achieving Net Zero.
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4.3. Opportunities for Machine Learning in Renewable Energy

Despite these challenges, machine learning offers many opportunities for advancing
renewable energy and achieving Net Zero targets. The following vital areas highlight how
ML can help revolutionise energy systems.

Energy Storage Optimisation is one of the primary challenges with renewable energy
sources is their intermittency. Solar and wind energy are not always available when
demand is highest. However, machine learning models can be used to optimise energy
storage systems, such as batteries. By predicting when energy generation will exceed
demand, ML can help store excess energy, ensuring that it is available during periods of
low generation [71,72]. This would enable a more reliable and consistent energy supply
from renewable sources.

Grid Load Management and Optimisation help machine learning models predict
energy demand across different regions and distribute energy resources accordingly. For ex-
ample, this research’s energy grid load distribution heatmap showed how ML optimisations
can predict and balance energy demand, avoiding shortages and oversupply. Figure 7a: A
bar chart showing changes in greenhouse gas (GHG) emissions by country, with the EU
and the USA showing significant reductions. Figure 7b: Projections of global temperature
increases under various climate policies, pledges, and optimistic scenarios. This Figure
highlights how different policy actions and targets impact emissions and temperature,
emphasising machine learning’s role in accurately predicting these trends to achieve Net
Zero goals.
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Machine learning systems could also manage and optimise distributed energy resources,
such as solar panels in homes and businesses, improving overall grid stability and efficiency.

Reduction in Greenhouse Gas Emissions Machine learning can help reduce CO2
emissions by improving the efficiency of renewable energy generation. The reliance on
fossil fuels can be reduced by ensuring that renewable energy sources are used to their full
potential and optimising grid management. Furthermore, by predicting energy demand
and optimising supply, machine learning can help minimise the need for fossil fuel backup
energy generation, thereby contributing to Net Zero goals.

Renewable Energy Investment Machine learning can also reduce the financial risks
of renewable energy investments. Accurate energy forecasting makes renewable energy
projects more predictable and financially viable, attracting more investors. Machine learn-
ing models can also optimise investment portfolios for energy companies, identifying
high-value opportunities in solar, wind, and other renewable energy projects. Figure 8
shows a projection of global greenhouse gas (GHG) emissions from 1990 to 2030, including
historical data and future forecasts. It compares old projections (September 2020), new
projections (November 2021), and targets aligned with the 1.5 ◦C Paris Agreement. The
“Change” section highlights a potential reduction area if new measures are implemented.
Figure 8 emphasises how improved predictions, supported by machine learning models,
can influence global climate action. It underscores the novelty of accurate forecasting
in guiding policy adjustments toward achieving Net Zero by reducing emissions within
critical timelines.

Machine learning holds immense potential for driving the global agenda toward Net
Zero emissions by improving renewable energy systems, optimising grid management, and
reducing greenhouse gas emissions. However, several challenges must be addressed, particu-
larly in data quality, system complexity, scalability, and infrastructure. As more advancements
are made in machine learning technology, the opportunity for its integration into renewable
energy systems will grow, providing a more sustainable and cost-effective energy future. By
embracing these technologies and tackling the associated challenges, the energy sector can
make significant strides toward reducing global carbon emissions and achieving Net Zero
goals. Figure 9 displays global GHG emissions trajectories from 2000 to 2100, including histor-
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ical data and several future scenarios: policies and actions, 2030 targets, pledges, optimistic
scenarios, and a 1.5 ◦C consistent path. The “2030 ambition gap” highlights the shortfall
between current policies and what is needed to meet the 1.5 ◦C target. Figure 9 underscores
the urgency of closing the 2030 ambition gap to avoid severe warming. It illustrates the
impact of machine learning’s ability to forecast and optimise emissions reduction strategies,
supporting policy changes necessary for achieving Net Zero goals.
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5. Conclusions

The novelty of this research lies in its application of machine learning models to opti-
mise renewable energy systems, demonstrating their potential to significantly contribute to
achieving Net Zero emissions. By leveraging machine learning techniques such as Long
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Short-Term Memory (LSTM), Random Forest, and Support Vector Machines (SVMs), the
research enhances energy forecasting, grid optimisation, and storage management, all
essential components of a sustainable energy future.

Quantified results from this study reveal that machine learning models can reduce
errors in energy generation predictions, with Random Forest achieving the lowest Mean
Absolute Error (MAE) of approximately 8.5% compared to other models. The research also
highlights a 15% improvement in grid efficiency after optimisation, reducing energy loss
and increasing the reliability of renewable energy sources. Additionally, battery storage
optimisation using machine learning models demonstrated a 10–20% increase in efficiency
during charge and discharge cycles, directly contributing to the reduction of wasted energy.

In terms of environmental impact, this study quantified CO2 emission reductions
by energy source, showing that wind power contributed to a reduction of 15,000 tons of
CO2 annually, followed by hydropower and solar with reductions of 10,000 and 7500 tons,
respectively. The projections suggest that implementing machine learning-driven optimisa-
tions could close the current “ambition gap” by approximately 20% by 2030, significantly
aiding in meeting the 1.5 ◦C Paris Agreement targets. Overall, this research demonstrates
that machine learning can improve the accuracy of energy management systems, reduce
emissions, and accelerate the global transition to renewable energy, with measurable effi-
ciency and environmental impact improvements.
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52. Čurčić, T.; Kalloe, R.R.; Kreszner, M.A.; Van Luijk, O.; Puertas Puchol, S.; Caba Batuecas, E.; Salcedo Rahola, T.B. Gaining insights
into dwelling characteristics using machine learning for policy making on nearly zero-energy buildings with the use of smart
meter and weather data. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1–13. [CrossRef]

53. Marteau, T.M.; Chater, N.; Garnett, E.E. Changing behaviour for net zero 2050. BMJ 2021, 7, 375. [CrossRef]
54. Ramezanpour, K.; Jagannath, J. Intelligent zero trust architecture for 5G/6G networks: Principles, challenges, and the role of

machine learning in the context of O-RAN. Comput. Netw. 2022, 217, 109358. [CrossRef]
55. Liu, W.; Shen, Y.; Aungkulanon, P.; Ghalandari, M.; Le, B.N.; Alviz-Meza, A.; Cárdenas-Escrocia, Y. Machine learning applications

for photovoltaic system optimisation in zero green energy buildings. Energy Rep. 2023, 9, 2787–2796. [CrossRef]
56. Oviedo-Cepeda, J.C.; Amara, F.Z.; Athienitis, A.K. Model Predictive Control Horizon Impact Over the Flexibility of a Net Zero

Energy Building. In Proceedings of the InIECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society, Toronto,
ON, Canada, 13–16 October 2021.

57. Friesen, M.; Wisniewski, L.; Jasperneite, J. Machine Learning for Zero-Touch Management in Heterogeneous Industrial Networks-
A Review. In Proceedings of the 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), Pavia,
Italy, 27–29 April 2022. [CrossRef]

58. Schmidt, J.; Hoffmann, N.; Wang, H.C.; Borlido, P.; Carriço, P.J.; Cerqueira, T.F.; Botti, S.; Marques, M.A. Machine-Learning-
Assisted Determination of the Global Zero-Temperature Phase Diagram of Materials. Adv. Mater. 2023, 35, 2210788. [CrossRef]

59. Zhou, Q.; Pezaros, D. Evaluation of Machine Learning Classifiers for Zero-Day Intrusion Detection—An Analysis on CIC-AWS-
2018 dataset. arXiv 2019, arXiv:1905.03685.

60. Weng, C.; Yang, K.; Xie, X.; Katz, J.; Wang, X. Mystique: Efficient conversions for {Zero-Knowledge} proofs with applications to
machine learning. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13
August 2021.

61. Ohene, E.; Chan, A.P.; Darko, A. Review of global research advances towards net-zero emissions buildings. Energy Build. 2022,
266, 112142. [CrossRef]

62. Ashraf, W.M.; Uddin, G.M.; Tariq, R.; Ahmed, A.; Farhan, M.; Nazeer, M.A.; Hassan, R.U.; Naeem, A.; Jamil, H.; Krzywanski, J.;
et al. Artificial Intelligence Modeling-Based Optimisation of an Industrial-Scale Steam Turbine for Moving toward Net-Zero in
the Energy Sector. ACS Omega 2023, 8, 21709–21725. [CrossRef]

63. Moraliyage, H.; Dahanayake, S.; De Silva, D.; Mills, N.; Rathnayaka, P.; Nguyen, S.; Alahakoon, D.; Jennings, A. A robust artificial
intelligence approach with explainability for measurement and verification of energy efficient infrastructure for net zero carbon
emissions. Sensors 2022, 22, 9503. [CrossRef] [PubMed]

https://doi.org/10.1145/3589246.3595371
https://doi.org/10.1145/3325424.3329662
https://doi.org/10.1016/j.comcom.2022.11.001
https://doi.org/10.1007/s10922-022-09651-x
https://doi.org/10.1016/j.scs.2023.104625
https://doi.org/10.1109/TVT.2022.3182017
https://doi.org/10.13044/j.sdewes.d9.0388
https://doi.org/10.1136/bmj.n2293
https://doi.org/10.1016/j.comnet.2022.109358
https://doi.org/10.1016/j.egyr.2023.01.114
https://doi.org/10.1109/WFCS53837.2022.9779183
https://doi.org/10.1002/adma.202210788
https://doi.org/10.1016/j.enbuild.2022.112142
https://doi.org/10.1021/acsomega.3c01227
https://doi.org/10.3390/s22239503
https://www.ncbi.nlm.nih.gov/pubmed/36502204


Atmosphere 2024, 15, 1250 20 of 20

64. Usman, I.M.; Ho, Y.C.; Baloo, L.; Lam, M.K.; Sujarwo, W. A comprehensive review on the advances of bioproducts from biomass
towards meeting net zero carbon emissions (NZCE). Bioresour. Technol. 2022, 366, 128167.

65. Cao, L.; Hu, P.; Li, X.; Sun, H.; Zhang, J.; Zhang, C. Digital technologies for net-zero energy transition: A preliminary study.
Carbon Neutrality 2023, 2, 7. [CrossRef]

66. Achieving net zero emissions with machine learning: The challenge ahead. Nat. Mach. Intell. 2022, 4, 661–662. [CrossRef]
67. Wu, X.; Feng, Z.; Chen, H.; Qin, Y.; Zheng, S.; Wang, L.; Liu, Y.; Skibniewski, M.J. Intelligent optimisation framework of near zero

energy consumption building performance based on a hybrid machine learning algorithm. Renew. Sustain. Energy Rev. 2022, 167, 112703.
[CrossRef]

68. Thompson, J.S.; Fletcher, S.; Friderikos, V.; Gao, Y.; Hanzo, L.; Nakhai, M.R.; O’Farrell, T.; Wells, P.D. Editorial A Decade of Green
Radio and the Path to “Net Zero”: A United Kingdom Perspective. IEEE Trans. Green Commun. Netw. 2022, 6, 657–664. [CrossRef]

69. Sarhan, M.; Layeghy, S.; Gallagher, M.; Portmann, M. From zero-shot machine learning to zero-day attack detection. Int. J. Inf.
Secur. 2023, 22, 947–959. [CrossRef]

70. Real, E.; Liang, C.; So, D.; Le, Q. Automl-zero: Evolving machine learning algorithms from scratch. In Proceedings of the 37th
International Conference on Machine Learning, Virtual, 13–18 July 2020.

71. Mbona, I.; Eloff, J.H. Detecting zero-day intrusion attacks using semi-supervised machine learning approaches. IEEE Access 2022,
10, 69822–69838. [CrossRef]

72. Zeiler, W. Brains for Buildings to Achieve Net Zero. In Towards Net Zero Carbon Emissions in the Building Industry; Springer
International Publishing: Cham, Switzerland, 2022; pp. 63–89.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s43979-023-00047-7
https://doi.org/10.1038/s42256-022-00529-w
https://doi.org/10.1016/j.rser.2022.112703
https://doi.org/10.1109/TGCN.2022.3172596
https://doi.org/10.1007/s10207-023-00676-0
https://doi.org/10.1109/ACCESS.2022.3187116

	Introduction 
	Methodology 
	Data Collection and Preparation 
	Data Sanitisation and Preparation 
	Machine Learning Models and Algorithms 
	Optimisation Models 
	Anomaly Detection Models 

	Evaluation Metrics 
	Regression Metrics 
	Classification Metrics 
	Optimisation Metrics 


	Experimental Results and Analysis 
	Analysis of Renewable Energy Systems 
	Temporal and Spatial Variations in Energy Generation 
	Energy Consumption Patterns 
	Grid Efficiency and Energy Storage 

	Predictive Performance of Machine Learning Models 
	Energy Generation Forecasting 
	Energy Demand Prediction 
	Grid and Storage Optimisation 

	Insights for Achieving Net Zero Targets 
	Optimisation of Renewable Energy Integration 
	Improving Energy Efficiency 
	Enhanced Decision-Making for Policymakers and Investors 
	Scaling Machine Learning for Global Impact 


	Results and Discussion 
	Implications of Findings 
	Challenges in Implementing Machine Learning for Net Zero 
	Opportunities for Machine Learning in Renewable Energy 

	Conclusions 
	References

