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Highlights

What are the major findings?

• Hyperspectral imaging (HSI) enhances smart city applications by enabling detailed
spectral data collection for accurate real-time monitoring of air and water quality,
waste management, and energy systems.

• The integration of HSI with Internet of things, artificial intelligence, and machine
learning significantly improves data analysis and decision-making capabilities for
sustainable urban development.

What are the implications of the major findings?

• HSI-driven technologies can revolutionize urban infrastructure by providing data-driven
insights that enhance public health, resource efficiency, and environmental sustainability.

• Despite its complexity and cost, HSI offers a transformative potential to create smarter
and more resilient cities through advanced monitoring and analysis techniques.

Abstract: Smart cities are urban areas that use advanced technologies to make urban living
better through efficient resource management, sustainable development, and improved quality
of life. Hyperspectral imaging (HSI) is a noninvasive and nondestructive imaging technique
that is revolutionizing smart cities by offering improved real-time monitoring and analysis
capabilities across multiple urban sectors. In contrast with conventional imaging technologies,
HSI is capable of capturing data across a wider range of wavelengths, obtaining more detailed
spectral information, and in turn, higher detection and classification accuracies. This review
explores the diverse applications of HSI in smart cities, including air and water quality moni-
toring, effective waste management, urban planning, transportation, and energy management.
This study also examines advancements in HSI sensor technologies, data-processing tech-
niques, integration with Internet of things, and emerging trends, such as combining artificial
intelligence and machine learning with HSI for various smart city applications, providing
smart cities with real-time, data-driven insights that enhance public health and infrastructure.
Although HSI may generate complex data and tends to cost much, its potential to transform
cities into smarter and more sustainable environments is vast, as discussed in this review.

Keywords: artificial intelligence; environmental monitoring; hyperspectral imaging; inter-
net of things; machine learning; smart city; sustainable development; urban planning
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1. Introduction
Urbanization continues to increase and cause issues in city management and resource

allocation. The United Nations has forecasted that the percentage of urban population in
the world will increase from 55% in 2018 to 68% by 2050 [1]. To reduce strain on existing
infrastructure and resources caused by the increasing urban population, cities can be devel-
oped into smart cities, which are urban areas that support sustainable development and
improve the standard of living of their residents [2]. These cities use the most recent tech-
nologies, such as the Internet of things (IoT), information and communication technology,
and big data [3–5].

Elements, such as smart environment, smart energy, smart transportation, smart
infrastructure, smart healthcare, smart economy, smart agriculture, smart living, smart
governance, and smart people, comprise a smart city. An urban environment faces many
challenges, including natural calamities, electronic waste, and climate change. Nevertheless,
a smart city can effectively handle such challenges through environmental monitoring
and waste-sorting methods. Smart energy uses smart grids and smart light-emitting
diode streetlights [6]. Smart transportation means flexible and efficient transportation
systems [7]. Smart healthcare consists of faster and more accurate diagnosis and treatment
and earlier drug discovery [8]. Advanced technology has been proven to be useful in the
surgery and remote monitoring of patients. A smart economy is circular, and it minimizes
waste, pollution, and usage of nonrenewable resources [9]. As technology advances, cities
become smarter, but new challenges, such as concerns about data privacy and security,
arise [10]. As population increases, smart techniques, such as hyperspectral imaging (HSI),
are implemented to address the increasing complexities of urban living.

HSI is typically more powerful than the traditional RGB-imaging technique because it
can provide more information. RGB imaging can only capture information in the three-color
bands, and thus, it cannot detect and analyze a wide spectrum of light. By contrast, HSI
can capture a wider range of wavelengths from the ultraviolet (UV) region (100–400 nm)
to the visible region (400–700 nm) to the near-infrared (NIR) region (700–2500 nm), and it
provides many spectral bands [11]. Hypercubes that consist of a single spatial dimension
and two spectral dimensions can be obtained from HSI. HSI provides detailed spectral
information, called spectral signatures, for each pixel [12].

HSI has applications in numerous fields, including medicine, agriculture, food quality
control [13], and remote sensing [14]. It is a noninvasive diagnostic method that is widely
used in medicine for tissue imaging [15], and it also has surgical applications. It can be used
in the detection and diagnosis of tumors [16], cancers, and retinal diseases [17]. HSI can
also be used in food quality inspection, such as the detection of insect infestation, fungal
infection, and foreign materials [18]. It can be used to monitor food processes and evaluate
food safety and defects [19] and in the rapid detection of mycotoxins in food [20] and
microplastics in farmland soil [21]. HSI is used to perform advanced tasks, such as material
identification [22], anomaly detection [23], and precise environmental monitoring [24].
Other applications include nanomaterial research [25], criminal investigations, artwork
inspection [26], and mining [27]. HSI can also be combined with deep learning (DL) in
many applications, such as remote sensing, biomedical applications, forgery and forensic
analysis, and anti-counterfeiting [28].

Applications specific to smart cities include real-time environmental monitoring, urban
planning and management, energy management, transportation, and medical imaging. IoT
networks with smart sensors and devices are widely used in smart cities, and the huge
amount of data that are transferred can be interpreted to improve city functions, such as
smart transportation systems as shown in Figure 1. High-resolution data that provide
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detailed information regarding a city’s resources and infrastructure can be obtained using
HSI, contributing to a smarter city.
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The objective of this review is to study the role and effect of HSI in various aspects of
smart cities. This section briefly introduces smart cities and HSI. In the next section, HSI
applications in smart cities, such as air quality monitoring, water quality monitoring, waste
management, urban planning and management, energy management, and transportation,
are explored in detail. Other HSI applications, such as those in healthcare, counterfeit
detection, and agriculture, are also discussed. In the third section, recent advancements
in HSI, such as sensor technology, data processing and analysis, and IoT integration, are
examined. In the last section, emerging trends, limitations, and future scope of HSI in smart
cities are identified.

2. Applications of HSI in Smart Cities
2.1. Air Quality Monitoring

Air pollution poses a global threat, particularly in urban areas where pollutants, such
as nitrogen dioxide (NO2), fine particulate matter (PM2.5), volatile organic compounds
(VOCs), and ammonia (NH3), are prevalent due to industrial activities and vehicle emis-
sions. PM2.5 can cause serious cardiovascular and respiratory problems. The global burden
of disease study linked PM2.5 exposure to an estimated 4.2 million deaths in 2015, making
it the fifth highest risk factor for mortality worldwide [29]. In 2019, NO2 exposure in urban
areas was associated with approximately 549,715 deaths globally [30]. Air pollution levels
must be continuously monitored using air-quality-monitoring systems to prevent such
diseases and deaths. HSI can precisely detect pollutants by capturing spectral data across
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multiple wavelengths and accurately monitoring air pollutants, contributing to urban
planning and sustainable development as shown in Figure 2.
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Naethe et al. explored NO2 pollution by using visible and NIR (VNIR) his within the
550–680 nm range [31]. Unsupervised classification, partial least squares regression (PLSR),
and decision tree were used in the evaluation of spectral data. The decision tree, combined
with the principal components of downwelling radiance spectra, produced reliable NO2

retrievals, while the PLSR model effectively distinguished NO2 concentration ranges. Their
model predicted NO2 concentrations with 0.45 as the R2 value and a root mean square error
(RMSE) of 14.22 µg/m3, highlightihisHSI’s potential in monitoring NO2 emissions related
to traffic in urban settings. Xing et al. used UV and vihisle HSI with wavelengths within
300–560 nm and a spectral resolution of 0.6 nm to monitor VOC emissions, particularly
formaldehyde (HCHO), from industrial sources [32]. VOC diffusion was assessed via a
wind-driven transport/diffusion model, and the study noted deviationshistween HSI and
in situ measurements ranging from 4% to 19%. The highest detected HCHO concentration
was 120.44 ± 12.14 µg/m3, dehisstrating HSI’s effectiveness in detecting VOC pollution
from petrochemical activities. Noppen et al. used longwave ihisared (LWIR) HSI of range
800–135hism−1 and UV–Vis HSI to monitor NH3 and NO2 emissions from industrial
sources [33]. Cross-sectional flux and integrated mass enhancement techniques were used
to analyze high-resolution data from infrared measurements. NH3 emissions were found
to be significantly underestimated, with measured rates ranging from 1600 tons/year to
13,000 tons/year, depending on the method. This previous study highlighted the impor-
tance of accurate emission measurements for pollution control stratehiss and illustrated
HSI’s value in providing reliable air quality data.

Meléndez ehisl. used mid-infrared HSI within the range of 1850–6667 cm−1 and
1 cm−1 spectral resolution to quantify air pollutants [34]. A radiometric model was used
with the HITRAN database to calculate gas absorption and emission, and a principal com-
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ponent analysis (PCA) was performed for noise and dimensionality reduction. Retrieval
errors were below 2%, demonstrahisg the high precision of HSI in pollutant quantification.
Mukundan et al. developed an unmanned aerial vehihis (UAV)-based visible light HSI sys-
tem for monitoring air pollution by using wavelengths within 380–780 nm with a spectral
resolution of 1 nm [35]. DL techniques, such as a 3D convolutional neural network (CNN)
and PCA combined with the VGG-16 model, were used to classify air pollutants with an
acchiscy of 85.93%. Thus, UAV-based HSI systems are suitable for collecting real-time,
large-scale air quality data, which are essential for smart city environments. Qamar et al.
explored how air quality affects vegetatiohisealth by using ground-based VNIR HSI with
wavelengths between 0.4 µm and 1 µm and a spectral resolution of 0.75 nm [36]. Unsu-
pervised k-means clustering identified vegetation pixels in the images, and solar-induced
fluorescence (SIF) indicators were used along with PCA decomposition. The R2 values
were 40% and 47%, and thus, strong correlations were observed between SIF values and
vegetation health in polluted environments, illustrating how air pollution can negatively
affect urban vegetation.

Park et al. examined particulate matter (PMhisxposure in pine trees by using VNIR
HSI, selecting 14 spectral bands that represented pine needle exposure to PM emissions [37].
The kappa coefficient was 0.61, and classificahisn accuracy was 82%, demonstrating that HSI
could detect biological responses to particulate pollution in densely populated urbhisareas.
Huang et al. developed a UAV-based HSI system with CNN to determine the air quality
index, and it achieved an accuracy of 86.38%, indicating the scalability of UAV-based
HSI systems for continuous and autonomous air quality monitoring; such a feature is
essential for the sustainable management of urban air qhisity [38]. Chen et al. utilized
visible light HSI within the 380–780 nm range with a spectral resolution of 1 nm to monitor
coarse PM (PM10) and PM2.5 concentrations [39]. By applying multivariate regression
analysis and the Beer–Lambert law, the visible light band was found to provide higher
accuracy in PM concentration measurement compared with NIR and far-infrared bands.
The extinction coefficient for PM2.5 was 0.005135, and that for PM10 was 0.001837, with
correlation coefficients of 0.9789 and 0.9738, respectively, emphasizing the high precishis
of HSI in detecting PM. Su et al. developed an HSI system that can capture images
between 400 nm and 1000 nm, utilizing machine learning (ML) models, such as EDNet,
EnvNet, AlexNet, DenseNet, and random forest (RF), among hisch, EDNet exhibited the
best accuracy [40]. Hence, HSI can be integrated with ML for scalable, intelligent air quality
monitoring, promoting cleaner air and improving public health in smarhisities.

2.2. Water Quality Monitoring

Water pollution is a global issue because it can pose severe health risks and envi-
ronmental degradation. Based on the United Nations’ World Water Development Report
(WWDR), 829,000 individuals die annually because of unsafe drinking water and poor
sanitation [41]. Therefore, water quality monitoring is necessary to reduce whisr pollu-
tion and prevent water-borne diseases. The use of HSI for instantaneous water quality
monitoring in smart cities provides valuable data that can help ensure water safety and
sustainability as shown in Figure 3. Sun et al. used proximal his with a spectral resolution
of 1 nm and wavelengths of 400–1000 nm, and ML methods, such as RF regression (RFR),
Gaussian process regression (GPR), and back-propagation neural networks (BPNNs), to
monitor chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP),
with BPNN achieving over 80% accuracy for TN and over 90% for TP and COD [42]. Niu
et al. used VNhisHSI with a spectral resolution of 1 cm and a spatial resolution of 2 m,
along with PLSR, support vector regression (SVR), and patch- and pixel-based deep neural
network regression (DNNR) [43]. The prediction coefficients of determination (Rp2) were
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greater than 0.6, and the residual prediction deviations (RPDs) were above 1.6, with the
patch-based DNNR performing the best.
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Sagan et al. used spectral indices; bio-optical simulations; ML methods, such as SVR,
PLSR, and deep neural networks (DNNs); and cloud-computing methods to analyze water,
with ML methods being the most accurate [44]. VNIR and short-wavelength infrared
(hisR) HSI of spectral resolutions of 3.5, 7, and 10 nm within different wavelengths ranging
from 350 nm to 2500 nm were used. The proximal dataset contained mesocosm data and
Saint Louis University (SLU) data, while the satellite dataset contained water quality data
and satellite imagery from a Sentinel-2 and Landsat 8 virtual constellation. The predicted
parameters included dissolved oxygen (DO), blue–green algae phycocyanin (BGA-PC),
and chlorophyll-a (Chl-a). Empirical methods, such as DL and ML, exhibited the best
performance. Niroumand-Jadidi et al. used VNIR his SWIR HSI with wavelengths of
400–2500 nm and a spatial resolution of 30 m from the Precursore Iperspettrale della Missione
Applicativa (PRISMA) satellite for mapping in-water components [45]. After consistency
analysis, the radiative transfer model in the water color simulator (WASI) processor was
inverted. When comparing PRISMA data with Sentinel-2 imaging, a high correlation
of R > 0.83 was found for total suspended matter (TSM) despite the overestimation of
PRISMA-based reflectance at short-wavelength bands of 442 nm and 492 nm. Wei et al.
used UAVhisrne VNIR HSI with wavelengths within the 400–1000 nm range and a reso-
lution of 0.185 m [46]. Multilayer perceptron regression (MLPR), SVR, RFR, kernel ridge
regression (KRR), ordinary least squares regression (OLSR), and gradient boosting decision
tree regression (GBDTR) were the ML techniques used, with GBDTR and RFR demon-
strating good accuracies. GBDTR achieved the best inversion accuracy, and the adjusted
R2 values were 0.974 for the test data and 0.978 for the training data. Accordingly, the
potentiahisf UAV-borne HSI for smart city water quality monitoring to mitigate water
pollution is demonstrated.
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Lu et al. retrieved water quality parameters bhissing UAV-borne HSI with wave-
lengths between 350 nm and 2500 nm, a spectral resolution of 6.0 nm, and a spatial
resolution of 0.173 m/pixel [47]. The ML methods used included Adaboost regression
(ABR), catboost regression (CBR), gradient boosting regression tree (GBRT), extreme gradi-
ent boosting regression (XGBR), RF, extremely randomized trees (ERT), MLPR, support
vector machine (SVM), and elastic net (EN). The CBR model performed best with R2 values
of 0.94 for suspended solids (SS) and 0.96 for chlorophyll-a (Chl-a). The prediction per-
formance of the RF and GBR models was lower than that of CBR and EN, while MLPR
exhibited poor performance. The tree-based models achieved higher prediction accuracies
than the traditional MLhisdels, proving how HSI and tree-based models could be useful
for predicting water quality in urban environments. Liu et alhiseveloped a UAV-borne HSI
system based on an acousto-optic tunable filter (AOTF) and used ML methods, such as
particle swarm optimization (PSO)–least-squares SVM (LSSVM), BPNN, and RF [48]. RF
exhibited the highest accuracy in predicting Chl-a concentrations, with a determination
coefficient of 0.84 for the training samples, an RMSE of 3.19 µg/L, and a mean absolute
percentage error (MAPE) of 5.46.

Zhang et al. constructed a unique hybrid Bayesian BPNN model that involved a
BPNN feature extractor and DNN to retrieve water quality parameters [49]. The visible
hyperspectral data had wavelengths between 325 nm and 1075 nm, a spectral resolution
of 0.2 cm, and a spatial resolution of 0.2 m, which became 0.4 m after resampling. The
model had a coefficient of determination R2 above 0.9, which was more than the 0.6–0.8 that
could be obtained from conventional methods. MAPE ranged from 4% for nitrogen to
10% for COD. Zhang et al. used a self-adapting selection of multiple artificial neural
networks (SSNN) to monitor the qualhis of water [50]. Visible HSI wavelengths of 404.0 nm
to 894.3 nm and a spatial resolution of 40 cm was used to analyze 79 ground-measured
data-training samples and 30 testing samples. The R2 values of auto-selected models were
generally above 0.9, and the test dataset has MAPE below 10%; thus, the predicting model
fitted the data well. The R2 values provided by the linear regression equation were above
0.98, and the SSNN model exhibited the best performance. Finally, Yhis et al. used VNIR
and SWIR HSI with wavelengths between 350 nm and 2500 nm, a spatial resolution of 30 m,
and a spectral resolution of 10 nm in VNIR and 20 nm in SWIR [51]. SVR, PLSR, k-nearest
neighbors (k-NN), and extreme gradient boosting (XGBoost) models were used. The MAPE
obtained was 24.28% for DO, 18.44% for permanganate index (CODMn), and 37.04% for TP.
The use of HSI in these studies demonstrates its potential for the instantaneous and high-
precision monitoring of water quhisty parameters. By integrating HSI with ML techniques,
smart cities can ensure sustainable development and improve urban health outcomes.

2.3. Waste Management

The World Bank has predicted that the rate at which global municipal solid waste
(MSW) is generated will increase from 2 billion tons annually to more than 3 billion tons
per year by 2050 [52]. The amount of generated waste has been increasing rapidly, causing
environmental pollution his health risks. Smart cities need HSI to help wihiswaste sorting
and recycling, making HSI a powerful tool for reducing pollution, conserving valuable
resources, and fostering circular economies as shown in Figure 4. Aversano et al. used HSI
to classify space-related solid waste materials, such as para-aramid fiber, meta-aramid fiber,
multi-laminate, polyetherimide, and expanded polypropylene [53]. NIR and SWIR HSI,
PCA, and partial least squares discriminant analysis (PLSDA) were used. Sensitivity of
100% and specificity of up to 99.9% were realized for multi-laminate by using SWIR HSI.
HSI can distinguish useful waste from pollutants, promoting circular and sustainable waste
management. Xiao et al. used NIR HSI in the classification of construction waste, such as
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wood, plastic, concrete, rubber, bricks, and black bricks [54]. The use of ML techniques, such
as RF and extreme learning machine, provided 100% classification accuracy, demonstrating
that HSI can make construction waste management processes more efficient.
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Özkan et al. used HSI with DL to develop an early warning system for detecting
chlorine content in refuse-derived fuel [55]. This system, which involved NIR HSI of
900–1700 nm, determined the chlorine level with an accuracy of 88.9%, supporting safer and
more efficient RDF processing. Bonifazi et al. classified plastic waste by using hierarchical
PLSDA and push-broom SWIR HSI of 1000–2500 nm, with a spectral resolution of 6.3 nm
and a spatial resolution of 625 µm/pixel [56]. Apart from low-density polyethylene, the
seven other plastic types to be classified achieved accuracies above 94%. In another study,
Bonifazi et al. used SWIR HSI of 1000–2500 nm and a resolution of 150 µm/pixel to detect
asbestos in construction and demolition waste [57]. The PLSDA model could distinguish
asbestos from other materials with variances and most specificity and sensitivity values of
over 90%, clearly demonstrating the potential of HSI in hazardous waste identification.

Tao et al. reported that HSI of 900–1700 nm with a resolution of 3 nm could classify
municipal solid waste [58]. ML models, such as artificial neural network (ANN), RF, and
SVM, were used on 80 organic and 40 inorganic waste samples, for which a classification
accuracy of nearly 100% was obtained. Castro-Díaz et al. used SWIR HSI that ranged from
930 nm to 2500 nm and X-ray fluorescence to classify plasterboard waste for refurbishment,
achieving over 98% plasterboard recovery [59]. This process is particularly beneficial for
recycling gypsum, which is an important construction material. Kim et al. used VNIR
HSI of 400–1000 nm with LSSVM and PLS to evaluate food waste components in organic
fertilizers, obtaining a coefficient of determination of 0.83 between the predicted and actual
values and thus demonstrating the role of HSI in organic waste processing [60].

Singh et al. used NIR HSI of 900–1700 nm to classify post-consumer thermoplastics
for plastic recycling [61]. A feedforward ANN was used to classify hyperspectral images
of unknown plastic waste stream with 89.5% accuracy. Thus, HSI is a valuable approach
for improving plastic recycling in smart city waste management systems. Mahmoud et al.
used laser-induced fluorescence (LIF) and HSI to detect plastic waste on shorelines [62]. For
low-density polyethylene plastic in a simulated beach environment, distinct fluorescence
signals were observed at 450 nm for plastics and 750 nm for wood. Thus, HSI’s versatility
in environmental waste monitoring was exhibited. As urban areas continue to grow and
waste generation increases, HSI can be integrated to sort and recycle waste more effectively,
achieving more sustainable and circular waste management practices in smart cities.
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2.4. Urban Planning and Management

HSI is useful for urban planning and management in smart cities because it can pro-
vide comprehensive data on different areas across various wavelengths, allowing for the
precise classification of urban materials that are critical for infrastructure monitoring as
shown in Figure 5. Karoui et al. detected and estimated areas of photovoltaic (PV) panels
from real airborne hyperspectral data [63]. Hyspex hyperspectral cameras were used to
collect data in the VNIR range within the 400–1000 nm wavelength, a spectral resolution of
3.7 nm, and a spatial resolution of 0.84 m, and in the SWIR range within the 1000–2500 nm
wavelength, with a spectral resolution of 6 nm, and a spatial resolution of 1.6 m. Par-
tial linear nonnegative matrix factorization (NMF)-based unmixing techniques, such as
multipart-NMF and grd-part-NMF, surpassed conventional NMF unmixing techniques,
such as grd-NMF, multi-NMF, and the one class classification-based approach. Multipart-
NMF had a mean normalized mean square error (NMSE) of 23.73% for solar panels, while
in the literature, the multi-NMF had a mean NMSE of 98.64%. For grd-part-NMF, NMSE
was 84.0% compared with the literature’s grd-NMF mean NMSE of 103.03%. For the |CC|
criterion, the multipart-NMF had a mean of 0.98 compared with 0.49 for the literature
multipart-NMF, while the grd-part-NMF had a mean of 0.74 instead of 0.47.
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Ilehag et al. created the Karlsruhe Library of Urban Materials (KLUM), which contains
building materials [64]. FieldSpec has wavelengths that range from 350 nm to 2500 nm, with
1.4 nm spectral sampling and a spectral resolution of 3 nm in the VNIR range and 1.1 nm
spectral sampling and a spectral resolution of 8 nm in the SWIR1 and SWIR2 ranges. A total
of 181 material samples, including roof, façade, and ground samples, were divided into
12 urban material classes and 33 subclasses. Among these, the three largest material classes
were ceramic with 48 samples, concrete with 38 samples, and granite with 16 samples. k-
means, PCA, and t-distributed stochastic neighbor embedding (t-SNE) were the techniques
used. KLUM helps in the identification and classification of urban materials for urban
planning and upkeep. Brabant et al. compared hyperspectral methods to classify urban
tree varieties [65]. HySpex images with a resolution of 2 m and prototype HYPXIM images
with a resolution of 4 m offered high accuracy in recognizing 14 tree species when using
SVM and RF. A multispectral Sentinel-2 image was simulated from an airborne Hyspex
image at 10 m, producing prototypal spaceborne hyperspectral images called HYPXIM at
4 m and 8 m. The HYPXIM 4 m and HySpex 2 m that were reduced by minimum noise
fraction (MNF) provided the best classification accuracy of around 78.4% on 14 species and
a kappa index of agreement of 0.7 with SVM.

Man et al. extracted urban objects from cloud shadows by fusing airborne light
detection and ranging (LiDAR) point cloud data and NIR HSI data with a spectral resolution
of 4.8 nm and a spatial resolution of 2.5 m [66]. The accuracy with SVM was 87.30%, while
the decision fusion accuracy of the combined SVM and object-based classifiers was 92.30%.
Wang et al. used a multi-feature extraction model (MFEM) to identify impervious urban
surfaces by using features extracted from visible to shortwave Reflective Optics System
Imaging Spectrometer-3 hyperspectral images that ranged from 0.43 µm to 0.86 µm with
a spatial resolution of 1.3 m [67]. Spectral and spatial feature extraction was achieved by
integrating convolutional deep belief networks (CDBNs) with t-SNE in the model. MFEM
had a high overall accuracy (OA) of 96.16% in the city center scene and 98.87% in the
university scene. That is, OA improved by 8.75% in the former and 3.83% in the latter.

Degerickx et al. used high-resolution remote sensing data to map functional urban
green types [68]. They used 2 m VNIR and SWIR hyperspectral imagery with a spatial
resolution of 4 m, which became 8 m after resampling. Active airborne LiDAR remote
sensing technology and 0.5 m multispectral optical imagery and RF were used. The most
valuable dataset was airborne LiDAR, but fusion with hyperspectral data was required to
map the most detailed classes. The OA of initial maps was 0.84 and 0.86 for the detailed
and basic vegetation classes, respectively. A Sentinel-2 multispectral dataset was simulated
at a resolution of 10 m. Sun et al. created a new hyperspectral vegetation index (HSVI)
and used HSI with a spectral range of 380–1050 nm and a resolution of 1 m per pixel
for one dataset and a spectral range of 393–1012 nm and a resolution of 0.25 m per pixel
for two other datasets [69]. With more than 90% accuracy in vegetation extraction, HSVI
surpassed conventional vegetation indices, making it a reliable tool for tracking urban green
zones. Aryal et al. studied the use of mobile VNIR HSI with a wavelength of 450–950 nm
and a spectral resolution of 8 nm to detect material surface damage [70]. Among the
68 hyperspectral image instances and their companion gray-level images, 43 were concrete
surfaces, and 25 were asphalt surfaces. Hyperspectral pixels with dimensionality reduction
identified 8 different surface objects and outperformed gray-valued images with higher
spatial resolution. Meanwhile, ML techniques, such as multiclass SVM (MSVM), found
surface flaws accurately. The F1 score for fracture detection was 0.962.

Lavadiya et al. used VNIR HSI with 397–1004 nm wavelength to eliminate visual
ambiguity in corrosion detection to determine the reasons for corrosion on infrastructure
surfaces [71]. The training dataset comprised 35,000 data points, while the test dataset
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contained 15,000 data points. SVM was used to achieved 94% accuracy, but 18% misclas-
sification occurred in NaCl corrosion and 13% in Na2SO4 corrosion. Weber et al. used
multispectral and hyperspectral data of urban area studies as part of the hyperspectral
imagery for an environmental urban planning (HYEP) project [72]. One dataset contained
ground and airborne data collected during the 2012 Umbra experiment, while the other
consisted of data collected during the 2015 trial. HSI was in the VNIR and SWIR range
with a wavelength of 400–2500 nm and a resolution of 0.4–4 µm. Using HSI alone provided
an accuracy of only 71.2%, and thus, it was fused with SVM, RF, and NMF to obtain an
accuracy of 73.5%. For MS VHR image alone, accuracy was 69.2%, and it increased to
73.5% after fusion. The best classification method was SVM, followed by RF with MNF.
The aforementioned studies show how HSI helps with several elements of urban planning
and management in smarter cities by offering comprehensive data on urban conditions
and components.

2.5. Smart Transportation

HSI is capable of improving how transportation works in smart cities. By gathering de-
tailed information across a wide range of wavelengths, HSI is used in every aspect—from
helping self-driving cars navigate to assessing road conditions and detecting objects—
making cities safer and more efficient as shown in Figure 6. Around 290 million vehicles
were on the road in the U.S. in 2022, and an estimated 40% of individuals spend at least
1 h commuting each day [73]. As urban areas expand, traffic increases and technologies,
such as his, are used to improve road safety, manage traffic flow, and maintain road infras-
tructurhisHSI is important in smart transportation in smart cities, because of its numerous
applications in areas, such as autonomous vehicle navigation, pavement condition assess-
ment, and object detection. Jakubczyk et al.hised HSI for mobile robot navigation, collecting
data under various light and weather conditions across different terrain types, such as
asphalt, forest roads, and grass [74]. The study successfully improved surface recognition
by using kernel density estimation (KDE) and supervised learning with a modified nearest
neighbor method. It contributed to improved path planning and the determination of
permissible speeds for autonomous vehicles to establish smarter and safer transportation
systems.
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Taher et al. investigated whether using hyperspectral single photon LiDAR to improve
autonomous vehicle perception was feasible. A total of 300 samples across 10 distinct road
environment classes, including dry asphalt and snow-covered surfaces, were used [75].
Classification accuracy for RF and t-SNE increased from 50% to 94% as the number of
spectral channels increased from 2 to 30. The study occurred within the 920–1620 nm
wavelength. This approach emphasizes the importance of detailed spectral information for
improving the reliability of autonomous systems under diverse environmental conditions.
Özdemir et his used HSI to assess pavement conditions by collecting data from various soil
types, paving stones, and asphalt types [76]. ANN, SVM, spectral angle mapper (SAM),
and stacked autoencoders (SAEs) were the techniques used. ANN with SAM resulted in
improvements that ranged from 1.2% to 21%. Data were collected with a spatial resolution
of 5 cm along the track and 1 cm along the cross-track direction within the 400–900 nm
rhise. Thus, HSI can be used in detailed pavement analysis to maintain road infrastructure
in smart cities.

Abdellatif et al. introduced a novel asphalt crack index for pavement crack detehison
by using HSI in the VNIR range of 450–550 nm [77]. The index achieved considerable im-
provement in detecting cracks, with a rise of 21.37% in the F1 score, and exhibited potential
to contribute to automated road maintenance systems by making timely repair possible,
improving the safety and efficiency of transportation networks. Lee et al. developed a
lightweight CNN-based channel sampler trained through a self-supervised adversarial
learning tehisique that used HSI to improve vehicle detection [78]. Single-channel images
that prioritized the most critical spectral information were generated, improving object
detection accuracy, providing insights into the effect of specific wavelengths on detection
performance, and contributing to the development of smart transportation systems that
rely on real-time data processing.

Gutiérrez-Zaballa et al. studied fully convolutional networkhisFCNs) for on-chip
HSI segmentation in autonomous driving [79]. By utilizing the HSI-Drive 1.1 dataset,
their study compared field-programmable gate array (FPGA)-programmable system on
chip (PSoC) and graphics processing unit (GPU)-SoC architectures and demonstrated that
FPGA-PSoC achieved better energy consumption and processing latency. This procedure
was performed in the VNIR range between 535 nm and 975 nm, with a reduced resolution
ohis16 × 409 × 25. Thus, HSI paves the way for more responsive and energy-efficient
autonomous drhisng systems. Integrating HSI into various aspects of smart transportation
can make transportation systems smarter, safer, and mhis efficient. The ability of HSI
to provide comprehensive spectral data across a range of wavelengths and conditions
enhances the functionality of autonomous vehicles and supports the maintenance of road
infrastructure, making cities smarter and more livable.

2.6. Smart Energy

Smart energy systems are important to the success of smart cities, particularly as they
move toward 100% renewable energy. In 2018, global renewable energy production reached
376 TWh, a 6.1% rise from 2017, with solar and wind energy growinghis 28% and 11%,
respectively [80]. HSI can help in the maintenance of solar and wind energy infrastructure,
supporting the integration of renewable energy in urban areas as shown in Figure 7.
Baliyan et al. developed an advanced ML-based analytical framework to autonomously
analyze the hyperspectral Raman datasets of lithium-ion battery (LIB) electrodes [81]. By
utilizing a neural network and a combination of techniques, such as PCA and NMF with
self-organizing and alternating regression diagnostics (NMF-SO-ARD), an accuracy above
94% was obtained in classifying spectral signatures of LIB components, such as carbon
and LiMO2, where M = Ni, Mn, Co. By using ML with HSI, real-time analytics can be
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achieved with minimal human intervention, making energy storage systems more reliable
and efficient.

Smart Cities 2025, 8, x FOR PEER REVIEW 14 of 30 
 

Hyperspectral data in the VNIR range between 400 nm and 600 nm with a peak wave-
length at 450 nm were used to distinguish between working and nonworking regions of 
the cells. This noninvasive technique offers a rapid and accurate means to assess and im-
prove PV cell performance, facilitating better maintenance and management of solar en-
ergy systems in smart cities. Rizk et al. used HSI in the field of wind energy for the early 
detection of ice on wind turbine blades [85]. VNIR HSI of 3 nm spectral resolution with a 
wavelength between 340 nm and 1700 nm was used, allowing for the detection of ice for-
mation as thin as 0.1 mm, which is critical for preventing turbine malfunction and opti-
mizing wind energy generation. Rizk et al. also used HSI combined with multicriteria 
classification and net analyte signal algorithms to improve the detection of defects, such 
as cracks and erosion in wind turbine blades, attaining 100% detection accuracy by using 
only 55 bands, and demonstrating that HSI is necessary for the durability and operational 
efficiency of wind turbines in smart energy infrastructure [86]. HSI, combined with ad-
vanced analytical techniques, has advanced the monitoring, optimization, and mainte-
nance of various energy systems, which range from batteries to solar and wind energy in 
smart cities, creating more sustainable and resilient urban environments. 

 

Figure 7. Summary of studies on the use of HSI in smart energy [81–86]. 

2.7. Others 

HSI contributes to smart cities in other areas, such as smart healthcare, smart agricul-
ture, and counterfeit detection as shown in Figure 8. In healthcare, HSI boosts diagnostic 
accuracy and allows for continuous noninvasive monitoring, which is crucial for patient 
care. The smart healthcare market, which was estimated at USD 143.6 billion worldwide 
in 2019, continues to increase at 16% every year because innovations, such as HSI, have 
made it possible [87]. HSI is also used to observe crop health and soil and for resource use 
optimization in smart agriculture. For counterfeit detection, HSI provides a detailed anal-
ysis of forgery detection. These advances contribute to the safety and well-being of resi-
dents of smart cities. Wawerski et al. used SWIR HSI within the spectral range of 900–2500 
nm to monitor glucose and silicon levels, which is necessary in managing conditions, such 
as diabetes [88]. The dataset contained 94,730 glucose samples and 47,375 silicon samples. 
Linear regression exhibited an evaluation error of about 5% for silicon and over 10% for 
glucose. SVR and multilayer perceptron (MLP) performed better than linear regression, 
demonstrating how HSI can be used in real-time health-monitoring systems in smart cit-
ies. Ahn et al. used SWIR HSI of 887–1722 nm to estimate food nutrient composition from 
five food categories [89]. DNN provided high accuracies for carbohydrates, proteins, and 

Figure 7. Summary of studies on the use of HSI in smart energy [81–86].

Jörges et al. used HSI in the field of solar energy, particularly spaceborne PRISMA and
Airborne Visible Infrared Imaging Spectrometer—Next Generation (AVIRIS-NG) data with
a resolution of 5.3 m, to detect PV power plants [82]. Spectral indices, such as the normalized
hyperspectral index (nHI), normalized spectral profile index (NSPI), and advanced VNIR
and SWIR indices for classifying solar PV installations, were used. The PRISMA data,
which covered VNIR and SWIR range of 400–2505 nm with a resolution of 30 m, provided
70.53% user accuracy and 88.06% producer accuracy. Meanwhile, AVIRIS-NG data with
a resolution of 5.3 m yielded 65.94% accuracy for the former and 82.77% accuracy for the
latter. Thus, HSI can be used in renewable energy mapping and monitoring in urban
areas, contributing to the optimization of solar energy integration in smart cities. Schultz
et al. used hyperspectral photoluminescence (PL) imaging in the field of solar energy to
spatially resolve electrical parameters in laser-patterned perovskite solar cells, enabling the
fast and noninvasive determination of crucial metrics, such as quasi-Fermi level splitting
and shunt resistance, which are necessary to optimize electrical interconnections in solar
cells [83]. Nanosecond and picosecond laser pulses interconnected cells with minimal
material alteration, proving that HSI can improve the manufacturing and performance of
solar energy systems in smart cities.

Attia et al. explored a different aspect of solar energy by using k-means clustering
(k-mc) and HSI for the instant testing and noncontact diagnosis of mono-Si PV cells [84].
Hyperspectral data in the VNIR range between 400 nm and 600 nm with a peak wavelength
at 450 nm were used to distinguish between working and nonworking regions of the cells.
This noninvasive technique offers a rapid and accurate means to assess and improve PV
cell performance, facilitating better maintenance and management of solar energy systems
in smart cities. Rizk et al. used HSI in the field of wind energy for the early detection of
ice on wind turbine blades [85]. VNIR HSI of 3 nm spectral resolution with a wavelength
between 340 nm and 1700 nm was used, allowing for the detection of ice formation as
thin as 0.1 mm, which is critical for preventing turbine malfunction and optimizing wind
energy generation. Rizk et al. also used HSI combined with multicriteria classification
and net analyte signal algorithms to improve the detection of defects, such as cracks and
erosion in wind turbine blades, attaining 100% detection accuracy by using only 55 bands,
and demonstrating that HSI is necessary for the durability and operational efficiency of
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wind turbines in smart energy infrastructure [86]. HSI, combined with advanced analytical
techniques, has advanced the monitoring, optimization, and maintenance of various energy
systems, which range from batteries to solar and wind energy in smart cities, creating more
sustainable and resilient urban environments.

2.7. Others

HSI contributes to smart cities in other areas, such as smart healthcare, smart agricul-
ture, and counterfeit detection as shown in Figure 8. In healthcare, HSI boosts diagnostic
accuracy and allows for continuous noninvasive monitoring, which is crucial for patient
care. The smart healthcare market, which was estimated at USD 143.6 billion worldwide in
2019, continues to increase at 16% every year because innovations, such as HSI, have made
it possible [87]. HSI is also used to observe crop health and soil and for resource use opti-
mization in smart agriculture. For counterfeit detection, HSI provides a detailed analysis
of forgery detection. These advances contribute to the safety and well-being of residents
of smart cities. Wawerski et al. used SWIR HSI within the spectral range of 900–2500 nm
to monitor glucose and silicon levels, which is necessary in managing conditions, such as
diabetes [88]. The dataset contained 94,730 glucose samples and 47,375 silicon samples.
Linear regression exhibited an evaluation error of about 5% for silicon and over 10% for
glucose. SVR and multilayer perceptron (MLP) performed better than linear regression,
demonstrating how HSI can be used in real-time health-monitoring systems in smart cities.
Ahn et al. used SWIR HSI of 887–1722 nm to estimate food nutrient composition from five
food categories [89]. DNN provided high accuracies for carbohydrates, proteins, and fats
(CPF) values, with an average R2 of 0.885 and a symmetric mean absolute percentage error
(SMAPE) of 0.1189. A nutrient analysis that uses HSI is helpful for those concerned about
food intake and weight changes because of various conditions, such as diabetes and obesity.
La Salvia et al. used HSI in medical imaging to detect skin cancer [90]. They analyzed
76 hyperspectral images of skin lesions from 61 subjects by using VNIR HSI within a
spectral range of 450–950 nm. A vision transformer (ViT) architecture was adopted. An
accuracy of 91% and a precision of 99% were obtained for malignant melanocytic lesions,
demonstrating the use of HSI in medical diagnostics, and thus, HSI contributes to smart
healthcare.

HSI is a pivotal technology in smart agriculture in smart cities, enabling precision
farming and efficient resource management. Neri et al. developed a real-time artificial
intelligence (AI)-assisted push-broom hyperspectral system to monitor plant health in
lettuce and arugula crops [91]. It was operated across a wavelength of 300–1000 nm in the
UV–VIS–NIR spectrum with a spatial resolution of 0.16 cm/px. This system used an MLP
neural network to analyze reflectance spectra. It allowed for continuous analysis across
720 ground positions at 50 fps to improve the ability to promptly respond to agricultural
needs in urban environments, such as smart cities. Ang et al. used the AVIRIS Indian pines
dataset and the ICONES hyperspectral satellite image dataset to classify agricultural areas
by using advanced ML techniques, such as linear discriminant analysis (LDA), SVM, k-NN,
and ensemble trees [92]. An accuracy of 77.8% was obtained on the AVIRIS dataset by
using SVM and HSI of 20 m spatial resolution and a spectral range from 0.2 µm to 2.4 µm.
SVM obtained 98.8% and ensemble tree obtained 94.4% on the ICONES dataset within
the spectral range of 365–2497 nm. Such precise classification supports smart agricultural
management by accurately identifying crop types and health from large-scale remote
sensing data, which is crucial for smart city planning and sustainability. Abdulridha
et al. used HSI within the VNIR range of 380–1000 nm to identify and classify downy
mildew severity stages in watermelon crops by using both benchtop systems and an aerial
UAV [93]. Their study used MLP and decision tree, and the best accuracy was 91% for
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MLP when disease severity DS was high. The key wavelengths identified for disease stage
differentiation were 531 nm and 700–900 nm, demonstrating the use of HSI and spectral
vegetation indices (VI) in enhancing disease detection by detecting crop diseases early and
improving urban agricultural productivity.
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Counterfeit detection may enter under smart integrity to protect residents and busi-
nesses in a smart city. Counterfeits of pharmaceutical products, food products, documents,
and artworks can be detected using HSI. Ciza et al. compared handheld NIR and Raman
spectrophotometers in detecting fake pharmaceutical products, such as ibuprofen, parac-
etamol, and artemether–lumefantrine in tablet or capsule forms [94]. By using hierarchical
clustering algorithms, data-driven soft independent modeling of class analogy, and hit
quality index, NIR systems were found to exhibit better detection abilities, with Matthews’
correlation coefficients that were nearly one. Phillips et al. detected adulteration in mānuka
and clover honey samples, with an accuracy of above 95%, particularly at high adulteration
levels, by using ML techniques, such as k-NN and SVM with NIR HSI of 400–1000 nm and
a spatial resolution of 520 × 696 [95]. The highest number of misclassification occurred for
lower adulteration concentrations. Tyagi et al. used HSI and unsupervised DL to detect
forged documents and identify writers [96]. The University of Western Australia’s writing-
ink hyperspectral image dataset was used to distinguish between blue and black inks. By
using a convolutional autoencoder (CAE) for feature extraction and SVM for classification,
an accuracy of 92.78% was attained in writer identification. Zeng et al. used multiscale
spatial–spectral feature fusion and CNNs to check whether three pairs of paintings were
real or fake [97]. High-definition VNIR hyperspectral images of 780, 850, and 930 nm were
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used, while circular local binary pattern (LBP) and PCA were adopted for feature extraction.
The test dataset provided an accuracy of 90.8%, which was a 3.5% improvement than the
existing top-performing 3D-CNN. Hence, the use of HSI in smart cities ensures authenticity,
prevents fraud, protects public health and safety, and ensures the reliability of financial,
legal, and cultural institutions.

3. Technological Advancements
3.1. Sensor Technology

Traditional methods, such as multispectral imaging (MSI), thermal imaging, and
LiDAR, have been widely used in various applications. Multispectral sensors may be
limited by their spectral resolution, but they are still capable of capturing data across
broad spectral bands for applications, such as land cover classification [98] and vegetation
monitoring [99], although limited by their spectral resolution. Thermal sensors monitor
urban heat emissions and help identify heat islands [100], but they struggle in differentiating
materials with similar thermal radiation. LiDAR offers high-resolution 3D mapping, which
is important for urban mapping [101] and infrastructure analysis [102]. LiDAR is effective
for spatial mapping but lacks spectral detail, and thus, it sometimes requires integration
with other sensors. Traditional sensors set the stage for more advanced sensors, and HSI
marks a significant innovation.

In contrast with multispectral sensors, HSI captures data across hundreds of con-
tiguous spectral bands, allowing for precise material identification. HSI is useful in tasks
such as pollutant detection [103], vegetation identification [104], and monitoring building
material degradation [105]. Its ability to capture subtle spectral differences surpasses earlier
sensor limitations. HSI sensors have three major types: push broom, whisk broom, and
snapshot. Push-broom sensors capture images line by line and can obtain spatial and
hyperspectral data [106]. Whisk-broom sensors scan pixel by pixel and offer uniform
coverage, but they can be affected by temporal illumination variations [107]. Snapshot
sensors capture entire images at once and are portable, but they tend to exhibit limitations
in hyperspectral data [108]. The sensor to be used depends on the specific application that
it will be used for.

Commercially available HSI sensors have a variety of applications in smart cities.
The spectrometers mentioned in this section have been used in the studies that have been
reviewed earlier. Their respective spectral ranges and resolution given in this section are
only possible examples because these specifications can be customized differently even
for the same type of spectrometers. Popular spectrometers include ASD FieldSpec 3 by
ASD Inc. (Falls Church, VA, USA), which is a field-portable spectrometer suitable for
environmental monitoring. This sensor provides high-resolution data, with a resolution
of 1 nm in the VNIR range between 350 nm and 1000 nm and a resolution of 8 nm in the
SWIR region from 1000 to 2500 nm. The Avantes AvaSpec-ULS2048L has a broad spectral
range of 200–1100 nm, while its resolution varies between 0.06 nm and 20 nm. It is highly
suitable for air quality monitoring and other environmental studies. The Telops FIRST-MW
Hypercam Fourier-transform infrared (FTIR) spectrometer operates in the mid-infrared
region within the spectral range of 1850–6667 cm−1, with a spectral resolution of 1 cm−1

for applications such as pollution detection tasks in smart cities.
The NIR hyperspectral camera, Specim, with an ImSpector N17E spectrograph, which

operates within the NIR range of 1000–1700 nm, can be used in waste classification and
material sorting. Specim supplies the SISUChema XL workstation, which works within the
SWIR range from 1000 nm to 2500 nm with a spectral resolution of 6.3 nm, and is normally
used in industrial waste management. The Texas Instruments TIDA 00554 spectrometer
utilizes digital micromirror device (DMD) technology in selecting precise wavelengths
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that allow for superior performance in high-speed dynamic applications, including waste
analysis and environmental monitoring. It operates within the NIR range between 900 nm
and 1700 nm. The HySpex SWIR-384 sensor, developed by Norsk Elektro Optikk, has a
SWIR range of 930–2500 nm and operates with new-generation high-resolution push-broom
scanning. Thus, it is highly suitable for smart transportation and infrastructure monitoring.

PRISMA is a satellite sensor developed by the Italian Space Agency. It has high
spectral resolution within the 400–2500 nm range. VNIR has 66 bands, while SWIR has
171 bands, both within a spectral resolution of ±9 nm. PRISMA satellite sensor data are
crucial for large-scale urban planning and environmental studies. The Headwall VNIR
Hyperspec camera has been proven to be useful in smart transportation systems, because
it operates within the VNIR range between 400 nm and 1000 nm with approximately
408 bands. Thus, it is good for traffic and infrastructure observation. The hyperspectral
camera SOC710 from Surface Optics exhibits representation for a spectral range between
400 nm and 1000 nm with a spectral resolution of 5 nm and 128 spectral channels. It can be
useful in environmental assessments and smart energy.

The Gaiasky mini2-VN is a UAV-mounted hyperspectral imager with a spectral range
of 393–1012 nm across 360 bands. It was designed for several applications involved in
environmental monitoring and land cover classification. It offers high-resolution data for
the precise identification of ground features.

Recent advances have focused on miniaturizing hyperspectral sensors for deployment
on UAVs [109] and ground vehicles. These sensors will be cost-effective, easier to integrate,
and exhibit better durability and range, such that they can be used in harsh environments
for comprehensive urban monitoring. Simultaneously, they will still have high spectral
resolution. The multi-sensor data fusion of HSI with technologies, such as MSI, LiDAR, and
thermal imaging, can provide a more holistic urban view [110]. Similarly, multispectral,
HSI, LiDAR, and synthetic aperture radar (SAR) data contain detailed information that
is complementary to one another, and data fusion can help obtain images with even
better resolution, improving the overall efficiency and effectiveness of urban monitoring in
smart cities [111].

3.2. Data Processing and Analysis

HSI is critical for smart city applications. However, considerable computational
resources are required due to the huge amount of available hyperspectral data. Efficient
data compression methods, such as unmixing-based algorithms, have been used to manage
bandwidth limitations during data transfer, particularly in small satellites with limited
power and storage. However, these computationally demanding compression processes
frequently have to rely on hardware accelerators, such as FPGAs and GPUs [112]. They
can be used to monitor and analyze urban landscapes in real time, ensuring timely and
accurate data delivery for smart city management. Platforms that support parallel and
distributed computing methods, such as FPGA-cloud and GPU-cloud platforms, improve
anomaly detection in hyperspectral images, which is important for identifying unusual
events in dynamic urban environments [113].

Onboard information processing for anomaly detection has achieved considerable
progress, particularly with hardware-friendly algorithms embedded into reconfigurable
devices, such as the HW-LbL-FAD detector, and less costly and energy-saving FPGAs
can be used. This development is critical for smart city applications where real-time
performance is necessary to respond to urban challenges as they arise [114]. Rapid pro-
totyping in FPGA-based systems has enabled the use of MSVM algorithms for real-time
HSI applications, which are important for smart cities [115]. Open-source hyperspectral
image-processing software, such as HSI-PP, combines image processing, feature extraction,
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and modeling into a proper data mechanism with high throughput capacity, such that
large-scale environmental data can be precisely and rapidly processed [116].

Dimensionality and noise reduction techniques, such as PCA and MNF, are crucial for
making hyperspectral data manageable while retaining essential spectral information [117].
This condition is critical in smart cities, because planners and environmental managers
require precise data to enable them to make appropriate decisions regarding infrastructure
development and environmental conservation. ML and DL algorithms, such as CNNs [118],
SVMs, and RF, improve the classification accuracy of land cover types and materials
necessary for effective urban management [119]. Integrating HSI with big data analytics,
AI [120], and ML techniques will help in processing and interpreting vast datasets, making
data-driven decisions, and raising the utilization efficiency of resources in smart cities [121].

HSI can be used with autoencoders for encoding and decoding, possibly revealing
previously hidden patterns in big datasets to ensure correctness in predictive models and
decision-making in smart cities [122]. Although useful for any type of application, cloud-
based analysis has been proven to be highly valuable in large-scale urban monitoring
assignments, such as pollution tracking or disaster impact assessment [123]. The huge
amounts of data generated by hyperspectral sensors require powerful storage and pro-
cessing frameworks. Advanced big data techniques, such as the local discriminant model
and global integration (LDMGI) algorithm, and big data branch definition can extract and
classify spectral features hierarchically and improve the accuracy of queries within smart
city databases [124]. In addition, novel computational frameworks for big hyperspectral
data analytics address challenges in high-dimensional and multisource data, enhancing
scalability and efficiency in a manner that is critical for the complex and multifaceted data
environments of smart cities [125].

3.3. IoT Integration

HSI can be incorporated into IoT networks and used with AI for streamlined data
transmission and cloud-based processing, making real-time data collection and analysis
simpler and more efficient, and improving decision-making in smart cities [126]. IoT-HSI
systems are necessary to keep environmental factors, such as air and water quality, in check
because they are closely tied to public health. In air quality monitoring, UAVs equipped
with HSI sensors can capture highly accurate air pollutant data. IoT-HSI systems can be
used to monitor water bodies for pollutants, turbidity, and other water quality parameters.
IoT networks ensure that data will be transferred quickly to central databases for analysis,
allowing authorities to address pollution issues promptly. Such systems can also automate
waste sorting and recycling by classifying waste materials in accordance with their spectral
signatures, and data collected from different waste collection points are sent to a central
hub for analysis, allowing cities to optimize collection routes and ultimately reducing costs.

These IoT-driven systems are also used in satellite technology to handle large-scale
tasks, such as land cover classification [127]. Cities can also use edge computing with
HSI for real-time urban planning. Advanced methods, such as maximum–minimum
distance embedding and unsupervised classification frameworks, can be used to improve
accuracy [128]. Semi-supervised learning models, such as adaptive pseudo-label feature
learning (APFL), further improve classification by creating pseudo-labels and reducing
interclass variance [129]. When DL models, particularly those built on batch structures, are
integrated into IoT-HSI systems, they can process smaller datasets more effectively [130].
By integrating HSI and IoT, HSI will be able to identify and classify specific materials better,
such as the application of HSI unmixing in identifying a specific material present in an
urban background, e.g., vegetation [131]. These advanced techniques, including nonlinear
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unmixing with autoencoder networks, have been applied in smart farming, particularly
when drones are used [132].

IoT-HSI systems can monitor and obtain real-time data from infrastructure, such as
roads, railway tracks, and solar panels, in case of defects to schedule maintenance sessions
if necessary. In smart healthcare, hospitals can benefit from IoT-HSI technology because it
allows real-time monitoring of patients. IoT-HSI systems help monitor grain storage for
food safety and pest management [133]. They also detect pesticide residues in fruits and
vegetables to comply with safety regulations [134]. AI and IoT can be used with HSI to
recognize plant diseases in smart farming [135]. IoT-HSI systems can help farmers make
better decisions on irrigation, fertilization, and pest control, improving yields and reducing
chemical use [136].

IoT-HSI systems can be used in counterfeit detection, which is necessary to ensure
product authenticity and protect consumer rights. Secure cloud-aided object recognition
in hyperspectral remote sensing allows for resource-constrained devices in smart cities
to perform complex tasks efficiently [137]. Combining IoT and HSI technologies allows
for efficient real-time monitoring, resource management, and decision-making across
multiple applications. As the scale of IoT networks increases and HSI systems become
more accessible, these types of systems will develop more toward smarter and sustainable
modes of urban development.

4. Future Prospects
4.1. Emerging Trends

Emerging trends in HSI for smart cities include integrating advanced technologies,
such as AI, ML, cloud computing, edge computing, and IoT. They enable more efficient data
analysis and better real-time decisions. AI and ML can be used to process huge complex
datasets generated by hyperspectral sensors [138]. As cities expand and more sophisticated
tools are required to manage diverse data streams, AI and ML models are necessary to
automate hyperspectral data analysis and predict environmental changes, streamline urban
planning, and improve public safety measures. ML and DL are increasingly used in HSI
applications, such as medical diagnosis [139,140]. Cloud computing is required to store and
process huge amounts of data produced by HSI systems, providing real-time data access
and enabling large-scale AI model deployment [141].

IoT-HSI systems represent a growing trend due to their uses in real-time environmental
monitoring. IoT devices with hyperspectral sensors collect continuous data on factors
that enable cities to make rapid adjustments. Integrating IoT can help improve smart
transportation, disease diagnosis, and energy efficiency [142]. Remote sensing technologies,
such as drones and satellites, are increasingly used with HSI to evaluate urban landscapes
and infrastructure health. DL models have been widely used in processing highly detailed
remotely sensed HSI data and address issues in a city, such as pollution [143]. Edge
computing is a decentralized approach that allows hyperspectral data to be processed
locally, enabling real-time adjustments to reduce congestion and ensuring that essential
services, such as public safety and transportation, can operate autonomously without any
delays. These emerging trends contribute to a more efficient and sustainable smart city.

Although it is currently used in more conventional fields, HSI is emerging in fields,
such as nano- and micromaterials, bioimaging, and biosensing. Its value lies in its
ability to reveal environment-specific optical properties, improving interpretation of
structure–property relationships and nano–bio interactions. HSI’s high spectral resolu-
tion also supports optical multiplexing, which is essential for high-throughput biological
imaging [144].
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4.2. Real-Time Processing and Ethical and Policy Implication Challenges of AI-Powered HSI in
Smart Cities

ML and DL have markedly advanced HSI applications by augmenting classification,
feature extraction, and anomaly detection in the context of smart cities. Conventional
ML methods, including SVM and k-NN, are extensively employed in hyperspectral data
categorization due to their proficiency in managing high-dimensional spectral data with a
scarcity of labeled samples. Nonetheless, they frequently encounter difficulties with feature
extraction and scalability when managing extensive datasets. Conversely, DL techniques,
such as CNN, have transformed HSI analysis by autonomously acquiring spatial and
spectral characteristics, leading to enhanced accuracy and generalization. Recently, genera-
tive adversarial networks (GANs) have been investigated for spectral data augmentation,
addressing issues associated with restricted labeled datasets, while transformer-based
designs provide improved contextual learning, facilitating superior performance in intri-
cate urban settings. Despite their benefits, DL models demand substantial computational
resources and extensive training datasets, which may not always be practical in real-time
smart city applications. Future research must focus on refining AI algorithms to achieve a
balance between accuracy and computing efficiency, facilitating wider implementation of
AI-driven HSI in urban systems. The amalgamation of HSI with edge computing and IoT
presents significant opportunities for real-time smart city applications, including pollution
monitoring, traffic control, and infrastructure evaluation. Nonetheless, the computational
requirements of HSI pose considerable obstacles to real-time processing in edge computing
and IoT settings. In contrast with traditional imaging, HSI data encompass hundreds
of spectral bands per pixel, resulting in increased storage, transmission, and processing
expenses. Conventional cloud-based processing models may incur latency, rendering them
inappropriate for time-sensitive applications. Researchers are creating lightweight DL
models that are targeted for edge deployment, including pruned CNN architecture and
knowledge distillation approaches that diminish model complexity while preserving accu-
racy. Furthermore, progress in neuromorphic computing and FPGA-based accelerators is
facilitating more energy-efficient processing of hyperspectral data directly on edge devices.
By utilizing AI-driven on-chip computing, urban monitoring systems can execute real-time
anomaly detection and predictive analytics independently of centralized servers. Future
endeavors should focus on improving hardware–software co-optimization to provide accel-
erated and more scalable HSI applications in smart cities. Although AI-driven HSI offers
transformative potential for urban planning, environmental monitoring, and security, its
implementation poses significant ethical and policy challenges. A key concern is data
privacy, because hyperspectral sensors can acquire intricate spectral signatures of materials,
human activities, and urban environments, potentially resulting in inadvertent surveillance
and privacy infringements. Moreover, algorithmic bias in AI-driven HSI analysis may
adversely affect underprivileged communities if not meticulously managed, particularly
in fields such as health monitoring, pollution evaluation, and infrastructure planning.
Regulatory frameworks must be developed to guarantee transparent AI decision-making,
data anonymization, and ethical AI governance in the integration of HSI into smart city
infrastructures. Moreover, environmental policies must direct the judicious implemen-
tation of airborne and spaceborne HSI sensors to mitigate ecological disturbance while
enhancing their effectiveness for sustainability initiatives. Involving politicians, engineers,
and urban planners in interdisciplinary dialogs will be essential for creating AI-driven HSI
applications that emphasize innovation and ethical accountability.
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4.3. Limitations and Future Scope

HSI can be incorporated into IoT networks and used with AI for streamlined data
transmission; HSI tends to generate huge datasets with high-dimensional data, which
require complex data acquisition and processing techniques [145]. A huge amount of
storage and high-speed processing capabilities are required. PCA and its variations may
be used for dimensionality reduction, while MNF may be used for noise reduction [146].
Interpreting intricate hyperspectral data requires advanced algorithms, but current AI and
ML models are not yet optimized for high-dimensional HSI data, risking inaccuracies in
applications, such as pollution detection. Integrating HSI with existing urban systems re-
mains challenging due to the need for significant upgrades in hardware, software, and data
management interfaces, hindering interoperability with conventional smart city platforms.

Hyperspectral sensors tend to be expensive and pose several challenges, such as short
battery endurance in UAV HSI operations [147]. Environmental factors further complicate
HSI’s use because hyperspectral sensors are sensitive to weather conditions, such as cloud
cover, rain, and fog, which may decrease visibility and, thus, affect data quality and relia-
bility. Variable lighting and shadows in urban areas may also impair spectral resolution.
Overcoming these challenges will require further technological advancements in a smart
city as a whole. The mixed pixel problem is ubiquitous in remote sensing images for urban
land use interpretation due to hardware limitations. Subpixel mapping (SPM) is a common
method used to address this issue by enhancing the observation scale and achieving a
more refined spatial resolution in land cover mapping. Satellite-based HSI is extensively
employed in large-scale urban monitoring, but its constrained spatial resolution poses
obstacles, including mixed pixels and spectral fluctuation, which diminish its capacity to
reliably differentiate ground objects. These constraints result in spectrum mixing, which
complicates urban categorization tasks. Recent improvements, such as spectral unmixing
models, DL-based subpixel categorization, and data fusion algorithms, address these chal-
lenges by improving spatial resolution. Hybrid methodologies that combine satellite, aerial,
and UAV-based hyperspectral imaging are emerging as effective methods for enhancing
urban-scale monitoring. He et al. proposed a semantic information-modulated (SIM) deep
subpixel mapping network (SIMNet) that utilizes low-resolution semantic images prior to
enhance the representation of spatial context characteristics. Their findings indicated that
the suggested SIMNet is an effective method for high-resolution urban land use mapping
by utilizing readily accessible lower-resolution remote sensing imagery [148].

As cities become increasingly interconnected, HSI also becomes more important in
various aspects of smart cities, such as in the real-time monitoring of infrastructure, environ-
mental conditions, and resource usage. The high cost and need for specialized equipment
limit HSI’s broader application. Accordingly, the development of portable, low-cost, and
miniaturized hyperspectral acquisition devices is being explored, and it can help monitor
environmental quality with more flexibility [149]. Thus, future advancements in HSI in-
clude the development of smaller and more affordable systems integrated into citywide
networks that can be deployed at various scales. Improvements in microprocessors and
dedicated ML cores will lead to faster data analysis and affordable detectors. These ad-
vances will facilitate the use of HSI in mobile platforms and smaller-scale operations [150].
Furthermore, techniques, such as transfer learning and graph-based convolutional net-
works, can enhance the handling of high-dimensional data direction [151]. With advances
in AI and machine learning, HSI can provide data for predictive models that can enhance
city management, including forecasting infrastructure failures and environmental hazards,
allowing for autonomous decision-making to optimize city operations and improve safety.

HSI technologies have advanced considerably, presenting different compromises
in spectral resolution, signal-to-noise ratio (SNR), geographic coverage, and computing
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efficiency. Conventional push-broom and whisk-broom sensors are extensively utilized
because of their elevated spectrum resolution and exceptional SNR. Push-broom sensors
simultaneously collect a complete line of pixels, resulting in enhanced spatial and spectral
fidelity, while whisk-broom sensors scan pixel by pixel, attaining remarkable spectral purity
but with slower data acquisition rates. However, both require mechanical scanning, limiting
their portability and real-time usability in dynamic urban environments. Snapshot HSI
sensors capture the complete environment in a single exposure, eliminating the necessity for
scanning and facilitating real-time processing, rendering them optimal for UAV-based and
handheld applications in smart cities. Metamaterial-based HSI sensors are emerging as a
promising alternative, leveraging engineered nanostructures to enhance spectral selectivity
and significantly reduce sensor size while maintaining high spectral fidelity. Cost is another
crucial factor in sensor selection. Conventional airborne and satellite hyperspectral imaging
systems, represented by Hyperion of the National Aeronautics and Space Administration
and Sentinel-2 of the European Space Agency, may incur costs that amount to millions of
dollars due to their superior spectral resolution and broad spatial coverage. Conversely,
smaller snapshot sensors incorporated into UAVs or portable devices, such as Specim
IQ and Cubert ULTRIS, are considerably more economical, generally priced between
USD 10,000 and USD 50,000. The latest sensors provide onboard real-time processing,
diminishing reliance on external computing resources and improving their use in smart city
applications, including real-time pollution monitoring, traffic control, and infrastructure
evaluation.

HSI will also integrate with emerging technologies in future smart cities, enhancing
areas such as traffic management, disaster preparedness, and infrastructure maintenance.
HSI already has uses in many areas, such as medical imaging, but in the future, it will be
used for even more applications with advancements in technology. For urban design and
planning, HSI can aid in visualizing and modeling interactions among urban materials,
light, heat, and pollutants, helping planners design cities that improve livability and reduce
energy consumption. Globally, HSI can connect cities through shared hyperspectral data,
fostering a coordinated response to urban challenges. Thus, HSI has considerable benefits
and can make smart cities more efficient.

HSI offers distinct advantages over other remote sensing technologies that are com-
monly used in urban monitoring, including MSI, LiDAR, and traditional optical sensors. In
contrast with traditional optical sensors that capture images in three visible bands (RGB),
MSI extends this capability to a limited number of discrete spectral bands that typically
range from 4 to 20. Although MSI provides better spectral discrimination than RGB imag-
ing, it lacks the fine spectral resolution of HSI, which captures hundreds of contiguous
bands, enabling detailed material identification. Compared with LiDAR, which excels in 3D
structural mapping and elevation modeling, HSI provides richer spectral information that
allows for material differentiation, pollution detection, and vegetation health assessment.
However, LiDAR surpasses HSI in generating precise topographical and structural data,
making it more suitable for applications, such as urban planning and infrastructure assess-
ment. Recent advancements integrate HSI and LiDAR data to enhance urban monitoring,
combining spatial precision with spectral depth. One of the key limitations of HSI is its
high computational demand and data storage requirements, which can pose challenges to
real-time applications, particularly in smart cities where rapid decision-making is essen-
tial. By contrast, multispectral and LiDAR technologies offer lower data complexity and
faster processing. However, with improvements in AI-driven processing, edge computing,
and data fusion techniques, the real-time applicability of HSI is continuously improving,
making it an indispensable tool for environmental monitoring, land use classification, and
urban sustainability initiatives.
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5. Conclusions
HSI holds limitless possibilities for the advancement of smart cities. Its applications in

various fields, such as environmental monitoring, urban planning, energy, transportation,
and healthcare, underscore its versatility and capacity to address the complex needs of
urban environments. Technological advancements in sensor technology, data processing
and analysis, and integration with IoT systems further enhance the potential of HSI to
provide real-time, actionable insights. Emerging trends such as the integration of AI, ML,
DL, cloud computing, edge computing, and IoT with HSI can make HSI more powerful
than ever. As cities become smarter, the role of HSI in enhancing sustainability, safety,
and efficiency becomes increasingly evident. Despite current limitations, such as high
costs and data complexity, emerging trends point toward broader adoption and innovation
in the field, and future research and development will likely focus on overcoming these
challenges and expanding the scope of HSI applications to make cities smarter. Ultimately,
integrating HSI into smart city frameworks will surely create more intelligent, responsive,
and sustainable urban systems, helping cities meet their needs and address global chal-
lenges. Future research must address real-time data-processing issues by incorporating
AI-driven edge computing to improve the efficiency of HSI. Furthermore, progress in sen-
sor downsizing for UAV applications is crucial for enhancing mobility and cost-efficiency.
Advanced investigation of DL models for spectrum analysis will improve classification
precision. Ultimately, the integration of multimodal sensor fusion that utilizes LiDAR and
thermal imaging can enhance HSI’s functionalities, rendering it more efficient for smart
city applications and urban surveillance.
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