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S O C I A L  S C I E N C E S

US federal resource allocations are inconsistent with 
concentrations of energy poverty
Carlos Batlle1,2,3, Peter Heller1,4*, Christopher Knittel1,5,6, Tim Schittekatte2,4,5

Recent data from the US Energy Information Administration reveals that nearly one in three households in the 
United States report experiencing energy poverty, and this number is only expected to rise. Federal assistance 
programs exist, but allocations across states have been nearly static since 1984, while the distribution of energy 
poverty is dynamic in location and time. We implement a LASSO- based machine learning approach using sociode-
mographic and geographical information to estimate energy burden in each US census tract for 2015 and 2020. 
We then compare the allocation to states from the Low Income Home Energy Assistance Program to an optimized 
allocation. We allocate funds to the most burdened households, providing them with enough assistance to reduce 
their energy expenditures so that their household energy burden is equal to a new maximum allowable energy 
burden. This markedly shifts funds from the northern cold- weather states to the southern warm- weather states.

INTRODUCTION
Nearly one in three households in the United States report experi-
encing energy poverty (1). This number is only expected to rise as 
climate change, and US decarbonization and electrification goals 
lead to an increase in the cost of energy services (2). With growing 
wealth and income inequality in the United States, low- income 
households will bear the majority of the impacts of the energy tran-
sition despite their necessary involvement in making the transition 
a reality (3–7). In addition, in the face of climate change, we can 
expect decreased heating demand and increased cooling demand 
(8), leading to greater importance of energy poverty as a result of 
cooling costs. Energy poverty describes the inability of a household 
to adequately use sufficient amounts of electricity, heat, and other 
energy services due to financial constraints (9–11). Living in energy 
poverty has direct impacts on increased mortality, decreased physi-
cal health, decreased mental well- being, and increased isolation 
(12). Overall, nearly 10% of households in the United States kept 
their homes at unhealthy or unsafe (either too high or too low) tem-
peratures. In the same year, ~20% of households reported having 
reduced or not purchased basic necessities to pay their energy bills 
(13). Consequently, governments can experience increased spend-
ing on social services and health care services because of ener-
gy poverty.

Here, we develop a method for estimating energy poverty levels 
across the United States and use these estimates to assess how allo-
cations of federal assistance under the Low Income Home Energy 
Assistance Program (LIHEAP) align with the spatial distribution 
of energy poverty, including comparing current allocations to an 
optimized allocation structure where we seek to limit households’ 
total energy burden. We build a machine learning model using 
an adaptive least absolute shrinkage and selection operator (LASSO) 
to estimate average household energy burden using sociodemo-
graphic and geographical information from the US Energy Information 

Administration’s (EIA) Residential Energy Consumption Survey 
(RECS) (13). We select a variety of input variables based on current 
literature demonstrating that socioeconomic status, race/ethnicity, 
dwelling age, building type, education, homeownership status, and 
geographic characteristics correlate with energy burden across vari-
ous locations (14–17). Then, using the US Census Bureau’s American 
Community Survey (ACS) data for 2015 and 2020, we obtain the 
average household energy burden in every census tract across the 
contiguous United States. While this approach uses similar data in-
puts as those to fusionACS (18), our approach differs in function. 
We produce a LASSO- based machine learning approach for esti-
mating energy burden based on household demographic and geo-
graphical information (see the Supplementary Materials).

We then use our energy poverty estimates to inform a more 
targeted allocation of federal assistance program funds to states. 
LIHEAP is the leading US federal program to help address energy 
poverty nationwide. LIHEAP was established in 1981 and pro-
vides states with federal block grants to assist households in paying 
their utility bills. This program distributes federal resources to 
states, and states are responsible for giving funds directly to house-
holds or utilities on the households’ behalf to pay down balances. 
Our results reveal that current federal allocations for energy assis-
tance, based on formulas designed nearly four decades ago, do not 
match well with the geographical distribution of assistance needed 
across the country. We find that allocating funds to states so that 
the energy burdens of the most burdened households are reduced 
to the same maximum value across the country would markedly 
shift funds from the northern cold- weather states to the southern 
warm- weatherstates.

Background and approach
Recent literature has quantified energy poverty, focusing on the 
United States and elsewhere (19–24). With regard to the United 
States, the literature focuses on specific areas or subgroups of the 
population (25–28), whereas our goal is to provide a comprehensive 
view of the entire nation and to relate this to federal assistance pro-
grams. The US Department of Energy’s National Renewable Energy 
Laboratory (NREL) has provided the first resource, the Low- Income 
Energy Affordability Data (LEAD) tool (29), that captures a nation-
al view of energy expenditures and burden. Our machine learning– 
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based method expands upon LEAD along two important dimen-
sions. First, the LEAD tool only presents data for one snapshot in 
time, which does not allow for understanding how energy burden is 
temporally dynamic. Second, it uses self- reported energy expendi-
tures given only for 1 month of the year, which is not reported 
publicly, meaning that the estimation of annual values does not 
necessarily fully account for the seasonal variation in energy costs 
throughout the months (29).

To build upon LEAD, we design our model to predict household 
energy burden based on sociodemographic and geographic vari-
ables that can be used from surveys taken at different points in time, 
namely, 2015 and 2020, for this analysis. The model selects the vari-
ables that best predict energy poverty. The 2015 model selects the 
interaction of household heating fuels with electricity prices, house-
hold incomes, and the number of household members. Households 
using propane or fuel oil for heating experience the largest increase 
in energy burden compared to those using other fuels. In addition, 
decreasing household income is highly correlated with increasing 
energy burden. Increasing the number of members in a household 
also increases the energy burden compared to households with 
fewer members. The model for 2020 selects similar variables for in-
creasing energy burdens. In 2020, household incomes have a larger 
influence over households’ energy burden than in 2015. The same 
relation is seen for heating fuels and the number of household mem-
bers. In 2015 and 2020, the household type also correlates with en-
ergy burden. Households living in multifamily units (five or more 
apartments, especially) have a decreased energy burden compared 
to those living in single- family units. A complete list of the variables 
selected and their relationship to energy burden can be found in 
fig. S3.

We then determine where concentrations of energy poverty exist 
across the United States by obtaining estimates of the average house-
hold energy burden in each census tract (73,057 tracts in 2015 and 
84,414 in 2020). This study uses an expenditure- based metric to de-
termine whether a household’s energy burden should be classified as 
energy poor. Originally introduced by Boardman (30) in 1991, the 
suggested metric identifies any household that spends more than a 
set percentage of their annual income on energy as energy poor. The 
accepted threshold in the United Kingdom was 10% for many years 
and is still in use for Wales, Scotland, and Northern Ireland for of-
ficial fuel poverty statistics (31). The fraction of income spent on 
energy services includes expenditures for electricity, natural gas, pro-
pane, fuel oil, and other vectors for household use, excluding costs 
for transportation. In the US context, the accepted threshold for high 
energy burden is set at 6%, as housing costs should not exceed 30% 
of income and utility costs should not exceed 20% of housing costs 
(25). Households that spend more than 10% of their income on en-
ergy are classified as experiencing severe energy burden (32).

RESULTS
Households experiencing an energy burden greater than 6% are 
classified as energy poor for this analysis. Figure 1 illustrates the dis-
tribution of the estimated average household energy burden across 
all census tracts across 2015 and 2020 and the change in energy bur-
dens across the 2 years.

We observe concentrations of energy poverty in the Southeastern 
United States, rural Northeastern areas, communities along  
the southern border, and areas in the Southwestern United States, 

consistent with those in (25). We see a small concentration of energy 
poverty in the south of South Dakota and in the northwest of Arizona. 
In 2015, Maine, Mississippi, Arkansas, Vermont, and Alabama have 
the highest median values of tract average energy burdens, respec-
tively. In 2020, Mississippi, Arkansas, Alabama, West Virginia, and 
Maine have the highest medians. Of the census tracts in which we 
estimate the average household is living in energy poverty, 23% 
are classified as urban in 2015. This number decreases to only 14% 
in 2020.

We find that estimates for energy burdens increase substantially 
between 2015 and 2020 for areas with relatively high energy bur-
dens, specifically in the Southeast and Southwest. In the Northwest, 
energy burdens decrease by up to five basis points. There are a few 
possible explanations for the increase in energy burdens we ob-
serve, such as increasing residential electricity rates, given the strong 
influence that these rates have on predicted energy burden (see 
fig. S3). Increasing electricity rates combined with increased adop-
tion of air conditioning and consistent cooling degree days (CDDs) 
in the southern United States, as evidenced by the RECS data, cre-
ate the right conditions for worsening energy burden. In addition, 
the COVID- 19 pandemic is a likely influence that created a shock 
in the US economy that left many unemployed, and 46% of lower- 
income adults reported difficulty in paying bills (33).

Fig. 1. Maps of average household energy burden between 2015 and 2020 
and change over the period in every census tract in the contiguous United 
States. (A) estimates of average energy burden using 2015 and 2020 US census 
Bureau’s AcS data in the machine learning model developed. Shades of green rep-
resent energy burdens between 0 and 6%. Shades of yellow to yellow- orange 
represent energy burdens between 6 and 10%. Shades of red represent energy 
burdens from 10 to 15% or greater. darker shades indicate higher estimated aver-
age energy burdens. Gray areas indicate census tracts with not applicable (n/A) 
values. (B) Map representing the changes in basis points of average energy burden 
between 2015 and 2020 for every census tract in the contiguous United States. Blue 
represents tracts where the average energy burden has decreased during the pe-
riod. Red represents tracts where the average energy burden has increased over 
time. darker shades represent greater change. White areas indicate census tracts 
with n/A values.
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In addition to estimating the average energy burden per census 
tract, our model also estimates the weighted average household ener-
gy burdens for all income brackets provided in the ACS data. This al-
lows us to investigate the distribution of energy poverty across tracts 
and how this relates to median tract income, shown in Fig. 2. Lower- 
income tracts appear to have a greater variance in energy burden lev-
els than tracts with higher incomes. This holds in 2015 and 2020, with 
larger ranges of energy burdens among all tracts in 2020. We note 
that both the mean and the spread of the energy burden for lower- 
income tracts increased substantially in 2020 compared to 2015 for 
tracts with incomes less than $39,999. The increased range of energy 
burdens for the highest median tract incomes ($60,000 to $99,999 
and $100,000+) could be explained by the impact of COVID- 19 on 
household incomes in these ranges of income.

In both 2015 and 2020, there are tracts for which the median an-
nual household income is above $60,000, and an average energy 
burden is greater than 6%. The high average burden is explained by 
the wide variance of income levels within the tract; while the aver-
age income is above $60,000, the bottom tail is long in these tracts. 
Furthermore, the presence of these long left tails in income is more 
pronounced in 2020 compared to that in 2015. For example, in 2020, 
there are 4094 of the 44,891 census tracts with a median income 
greater than $60,000, for which our model produces an average en-
ergy burden above 6%. However, there are no households with in-
comes greater than $60,000 that have an energy burden greater than 
6%. Instead, there is a substantial share of very low- income house-
holds in these tracts, which increases the average energy burden de-
spite the median tract income value.

DISCUSSION
Evaluation of federal resource allocation
Next, we explore the allocation of federal resources across states 
to verify whether it matches the concentrations of energy poverty 

observed. Awareness of the need to address energy poverty in the 
United States arose around the early 1970’s oil crisis. Since then, 
there have been a variety of initiatives to support consumers that 
can be seen as a pseudo- recognition of the problem despite no for-
mal definition (34). As noted above, the leading US federal program 
since 1981 is LIHEAP. Figure  3 shows the allocation of LIHEAP 
funds across states in 2015 and 2020.

When we compare areas of high- energy burden to the allocation 
of federal resources, we find that funding is concentrated in the 
Northern United States despite the higher and increasing rates of 
energy poverty that we observe in the South. As climate change ac-
celerates, we expect this misallocation to worsen. Northern areas 
will face lower, on average, heating burdens, while southern areas 
will face increasing cooling burdens. The net demand for heating 
and cooling combined is expected to decrease across much of the 
United States, except in the southeast and southern border, where 
net demand is expected to increase (8).

The misallocation can be explained by investigating the formulas 
used for the allocation of energy assistance. There are two formulas: 
an “old” and “new” formula. The old formula comes from the distri-
bution to states based on LIHEAP’s enactment in 1981, and Con-
gress took the directly from the Low Income Energy Assistance 
Program, LIHEAP’s predecessor. This old formula uses a variety of 
factors, including residential energy expenditures, heating degree 
days (HDDs), and household income. It did not account for cooling 
needs. Congress established the new formula during LIHEAP’s 1984 
reauthorization. The new formula made two changes. First, it uses 
both HDDs and CDDs and treats them symmetrically. Second, it 
requires the information used in the formulas to be the most up- to- 
date data available to the Secretary of Health and Human Services.

Despite the new formula’s goal of better targeting resource allo-
cation and treating heating and cooling needs the same, as part of 
the compromise to adopt the new formula, two “hold- harmless” pro-
visions in the federal statute were also adopted: the hold-harmless 

Fig. 2. Energy burden by median tract income, 2015 and 2020. Box and whisker plots for 2015 (red) and 2020 (blue) show the range of estimated average household 
energy burdens for census tracts with median incomes in each of the five income brackets ($0 to $19,999; $20,000 to $39,999; $40,000 to $59,999; $60,000 to $99,999; and 
$100,000 or greater). the five income brackets are chosen to align with available data from both 2015 and 2020. n = 71,767 for 2015 and n = 82,754 for 2020. this is a result 
of an increased number of census tracts in the 2020 data and accounts for removal of census tracts that return an n/A value.
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level and the hold- harmless rate. The hold- harmless level applies when 
LIHEAP appropriations are between the equivalent of a hypothetical 
fiscal year (FY) 1984 appropriation of $1.975 billion and $2.25 billion. 
In this scenario, any state that would receive a percentage of funds 
less than the old allotment percentage is guaranteed to receive, at 
minimum, the amount of funds that they would have received in the 
hypothetical FY 1984 appropriation. The hold- harmless rate is for 
years in which the LIHEAP appropriation exceeds $2.25 billion. In 
these years, states that would receive less than their old allotment 
percentage and less than 1% of the total appropriation must receive 
the percentage that they would have otherwise received if it were 
calculated at a total appropriation of $2.14 billion. In summary, the 
hold- harmless level guarantees a certain amount of funding, and 
the hold- harmless rate ensures a certain share of the total fund-
ing. These hold- harmless provisions create stickiness in the alloca-
tions across states, driving a wedge between the goal of the new 
formula, which is to treat heating and cooling the same, and actual 
allocations.

Clearly, determining funds available to each state is a complex 
process. To add to this complexity, Congress has decided several 
times in previous years to use language in the appropriations legisla-
tion that circumvents statute and allocates the total funds using a 
mixture of the old and new formula percentages (35). Despite the 
requirement that all funds be distributed according to the new for-
mula when the appropriation is large enough, between 2009 and 
2019, Congress continued to override the statute and allocate more 
than 80% of each year’s total funding through the old formula. In 
doing so, federal resources continue to be allocated in a manner 
consistent with the way they were over three decades prior, reflect-
ing the need to assist cold- weather states during fuel price shocks; 
however, conditions have changed since 1984, and the new formula 
that is intended to account for this change does not appear to be 
redistributing funds in a manner consistent with the concentrations 
of energy poverty that we identify. Adjusting the hold- harmless pro-
tections or allocating funds based on a new, dynamic formula that 
accurately accounts for the changes in conditions at yearly intervals 
is urgent to distribute funds to states where households require 
more assistance.

Optimized federal resource allocation alternative
We conclude by exploring one new allocation option for adjusting 
federal resource allocations to states based on our machine learning 

results. In the Energy Policy Act of 2005, Congress required that 
each state must show that the highest level of assistance is given to 
households with the highest energy costs and lowest income (e.g., 
highest energy burdens) (36). Following this requirement, we de-
sign a formula that takes the given budget for assistance and targets 
households with the highest energy burdens, as indicated by our 
model results, at the national level. We allocate funds to these house-
holds, providing them with enough assistance to reduce their ener-
gy expenditures so that their household energy burden is equal to a 
new maximum allowable energy burden.

While we use energy burden as the basis for the proposed for-
mula in this analysis, it is important to note that there is an impor-
tant avenue for future research related to the metric used to quantify 
energy poverty. In measuring energy poverty, there are three main 
methods explored in recent literature: expenditures, direct measure-
ment, and consensual survey data (10, 11, 22, 24–26, 37–39). These 
different methodologies capture important relationships between 
energy costs, income, and energy usage data that provide alternative 
insights into how households experience energy poverty (e.g., a 
household that is not identified as energy poor based on their bur-
den but maintains set heating and cooling temperatures that vary 
from the ideal or healthy levels). In designing a formula for resource 
allocation, the lack of data availability and complexity associated 
without having an official definition leaves space for these alterna-
tive metrics to be explored.

The maximum allowable energy burden is equal across the na-
tion and is determined by the size of the assistance program budget. 
This approach ensures that no single household receives an assis-
tance amount that would lower its energy burden beyond the 
maximum energy burden experienced by any household across 
the country (see the Supplementary Materials). Consequently, this 
method is akin to “shaving off ” the peaks of energy burden across 
households. A visual representation of the old, new, and our opti-
mized formula allocation methods can be found in the Supplemen-
tary Materials.

In doing so, we treat heating and cooling needs the same. This is 
consistent with the congressional goals stated in the Energy Policy 
Act of 2005 and the new LIHEAP formula. While these appear to be 
the goals of Congress, one could argue that heating needs are more 
important than cooling needs. Data from the Center for Disease 
Control and Prevention (CDC) show that, from 2006 to 2010, about 
two- thirds of temperature- related deaths were attributable to cold 

Fig. 3. Federal allocations of LIHEAP funds, 2015 and 2020. (A) Map of federal allocations of the liheAP in 2015. the total funding for each state is displayed as the US 
dollar amount per state- eligible household within each state. (B) Map of federal allocations of liheAP in 2020. the same units are used as in (A).

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 17, 2025



Batlle et al., Sci. Adv. 10, eadp8183 (2024)     9 October 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

5 of 10

weather rather than heat exposure. The literature focuses on the 
mortality effects of extreme cold and heat (40–42). While this is use-
ful, they do not identify to what extent mortality is prevented by 
specific interventions, including subsidizing heating or cooling. We 
come back to this issue below.

We can then determine how a given set of funds would reduce 
the maximum energy burden experienced across the contiguous 
United States, shown in Fig. 4. We see that if we were to allocate the 
same budget as the 2020 LIHEAP allocations, $4.7 billion US dollars 
(USD), then the new peak energy burden across all households 
would be 20.3%. In this scenario, there would still be 10% of house-
holds living with a severe energy burden; however, none of those 
households experience an energy burden greater than 20.3%. If 
the goal of energy assistance in 2020 was to make it such that no 
household is living in energy poverty (burden greater than 6%), 
then the assistance program would need $17.9 billion USD in 
funding, implying a nearly fourfold increase compared to the 
2020 LIHEAP budget.

After funds have been allocated to households to reduce the na-
tional peak energy burden, we then calculate the total funds that 
each state would receive under this design. In addition, we are able 
to show how the distribution and severity of energy burden would 
change in each census tract. Figure 5 illustrates the difference in how 
funds are distributed and in the average energy burden in each tract 
based on the 2020 allocation of funds versus the new formula that 
we design. We see that the amount of funds per energy- poor house-
hold markedly shifts from northern states to the eastern and south-
eastern United States, where our results indicate that energy poverty 
is concentrated. There is also a more equal distribution of energy 

burdens under the federally optimized allocation of assistance funds, 
whereas, in the current system, states in the north are able to nearly 
eradicate energy poverty, but southern states still see broad- sweeping 
concentrations of severe energy burdens.

There are two general ways policy- makers could use this analy-
sis to update allocations. The first would be to directly implement 
our machine learning approach, along with the optimization algo-
rithm. However, such additional analysis might be difficult to 
implement. A second way, therefore, would be to use the data 
they already collect to calculate the “new formula” but change the 
weights used within the formula. To calculate the new formula 
allocations, HHS could use state- level data on population, percent 
of the population below the poverty level, HDDs, CDDs, average 
home energy expenditures, average home energy expenditures for 
heating, and average home energy expenditures for cooling and 
assign weights to construct allocations. These variables are similar 
to those that are already collected to determine allocations. To get 
a sense of the reduction in efficiency of the latter method, we re-
gressed the optimal state- level allocations on this set of variables 
using both a purely linear model and a log- log model [note that we 
calculate the log- log model’s coefficient of determination (R2) after 
transforming the predictions and ground truth back to their linear 
form so that the two R2 calculations are comparable]. The R2 values 
of these regressions are 0.88 and 0.93, respectively, suggesting that 
Congress could achieve efficiency levels close to our full- optimized 
algorithm by constructing weights applied to the covariates used in 
our analysis.

We offer two caveats along with these calculations. First, it is im-
portant to note that, for the federally optimized allocation of funds 
to be implemented successfully, the system for administering funds 
to households would need to be changed. The current system relies 
on households submitting applications to their state governments or 
designated administrators and receiving an approval notice. Once 
approved, a household receives an assistance amount determined by 
the administrator, typically with a maximum amount set for either 
heating, cooling, or crisis assistance. In contrast, our allocation 
method would take the budgeted amount and provide assistance to 
any household that has an energy burden greater than the peak en-
ergy burden identified and provide enough assistance to reduce a 
household’s energy expenditure so that their burden matches the 
peak burden. This would mean that any eligible household based on 
this new criterion would receive the funding. This method of proof 
of eligibility and automatic payment is styled after several currently 
operating systems in Europe. For example, Spain’s electricity social 
bonus and thermal social bonus or Italy’s social electrical bonus and 
gas social bonus use this strategy. France’s energy check uses infor-
mation from the previous year’s tax returns to automatically qualify 
households and send assistance amounts.

The second caveat relates to the discussion above regarding po-
tential differences in the welfare implications of subsidizing heat-
ing and cooling needs. Rather than take a stand on the relative 
welfare weights across the two needs, we ask the following ques-
tion: How much more important would heating needs have to be 
for the current allocation across northern and southern states to 
be optimal? We discuss the details of this in the Supplementary 
Materials, but, effectively, we define burden as burden = cooling 
costs + β heat costs + other costs and search for the β value that 
would make the existing allocation across southern and northern 
states optimal. We find that would have to be 2.6, suggesting that 

Fig. 4. Assistance funding required to achieve different levels of maximum 
nationwide energy burden. this plot shows the complementary cumulative dis-
tribution function illustrating the distribution of household energy burdens across 
the United States. the figure illustrates the percentage of US households that have 
an energy burden at or above a given value. For example, 10% of US households 
have an energy burden greater than or equal to 10%. the three red lines show the 
ability of different federal funding amounts to reduce the maximum energy burden 
experiences by any households to a given value. (1) this line illustrates what distri-
bution of the current liheAP budget [$4.68 billion US dollars (USd)] could lower 
the maximum energy burden to (20.3%). in this scenario, 5.7% of US households 
would receive assistance. (2) to reduce the maximum energy burden experienced 
by any household to 10% (severe energy burden), $9.75 billion USd would be re-
quired and 10% of households would receive assistance. (3) to eradicate energy 
poverty in the context of this paper (no more than 6% energy burden), $17.9 billion 
USd would be required and 20.1% of households would receive assistance.
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Congress would have to value heating costs 2.6 times more valu-
able than cooling costs.

Energy poverty is a complex issue affecting households across 
the United States. It directly affects human health, social welfare, 
and economic success. We aim to contribute to the identification of 
where energy poverty exists and how it changes over time. Low in-
comes, household heating fuels, and the number of household 
members have the greatest impact on energy burdens. Between 
2015 and 2020, both the mean and variance of energy burdens 
among all income groups increased. Our analysis finds that average 
household energy burdens increased from 2015 to 2020 in areas 
with already relatively high burdens. During this same time window, 
though, we observe that allocations of federal resources, through 
LIHEAP, remain biased to cold weather states in the North and 
Northeast. This is a result of antiquated formulas that are used when 
determining the amount of assistance given to each state. After de-
termining a new formula for assistance allocation that would equi-
tably reduce the peak energy burden experienced by all households, 
we find that funding allocations shift markedly to southern states 
and away from northern states. As the climate and energy markets 
continue to evolve, it is important to update assistance funding al-
location to better match where energy burdens are highest in the 
United States to address energy poverty moving forward. With en-
ergy poverty concerns risking the transition to a low- carbon econo-
my and the political inertia in increasing budgets for the assistance 
of energy poverty, we urge policy- makers to revise the allocation of 

funds to better match the distribution of assistance needed across 
the country.

MATERIALS AND METHODS
We use machine learning to determine how various demographic 
and physical characteristics are correlated with household energy 
burdens across the United States. Energy burden estimates allow us 
to identify where energy poverty may be concentrated at the census- 
tract level. Our analysis extends and improves upon the LEAD tool, 
developed by the US Department of Energy’s NREL to estimate en-
ergy expenditures and burdens in several ways (29). The LEAD tool 
is designed to help local and state governments with decisions for 
addressing energy poverty; however, it is static in time and uses self- 
reported energy expenditures given only for 1 month of the year, 
which is not reported publicly. The reliance on 1 month implies that 
the estimation of annual values is not guaranteed to account for the 
seasonal variation in energy costs throughout the months. The sam-
pling done by the survey must sufficiently cover all months of the 
year, and this is not verifiable from the publicly available data. In 
addition, which month is used varies across respondents. Different 
from LEAD, we use household- level sociodemographic and geo-
graphic data, detailed in the following subsection, from the EIA’s 
RECS to estimate the annual energy burden. This survey is com-
pleted every 5 years, enabling us to track changes in energy burden 
over time.

Fig. 5. Optimal allocation of federal funds and resulting energy burdens. (A) Map of current federal allocations ($4.7 billion USd) of liheAP in 2020. Units are dollars 
per household identified as energy poor by the 6% energy burden metric in our model. (B) Map of optimized federal allocations of funds to address energy burden 
equally across the United States, given the same budget as liheAP in 2020. Optimized in this scenario is defined by providing enough funds to every state in the United 
States such that the maximum energy burden experienced by any household is equal across the country. Units are the same as (A). (C) Map of average energy burden in 
each census tract if the 2020 liheAP budget were allocated to states based on current liheAP allocations. households receive assistance from the state so that no house-
hold exceeds the maximum energy burden allowed given the funds received. We see that energy burdens are nearly all below 6% in the northern United States and en-
ergy burdens remain high in the South. the maximum energy burden experienced by any household in the United States would be 29.2%. (D) Map of average energy 
burden in each census tract if dollars are allocated in a “peak- shaving” manner. in this scenario, federal dollars are allocated to each state so that the maximum energy 
burden that any household experiences is equivalent across the country. in this map, the maximum energy burden experienced by any household would be 20.3%.
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To develop our projections at a census- tract level, we use an 
adaptive LASSO technique to select important variables from the 
RECS data to be applied to census- tract level information from the 
US Census Bureau’s ACS. We use this methodology in six steps, il-
lustrated by fig.  S1. In what follows, we first introduce the data 
sources. After, we describe the machine learning approach.

Materials
We perform machine learning analysis on the RECS from the EIA 
(13). RECS reports a nationally representative sample of households 
to collect demographic information, physical household character-
istics, and energy usage patterns. These data are joined with in-
formation from energy suppliers to produce estimates of energy 
services usage and costs for different end uses, including heating, 
cooling, and appliances. From the surveys, we select 17 variables as 
input variables into the model for estimating the total cost of energy 
services: census division, urban/rural classification, International 
Energy Conservation Code (IECC), CDDs, HDDs, household race, 
origin, highest education level achieved, age, number of household 
members, ownership status, annual income, household type, year 
built, heating fuel used, number of rooms, and number of bed-
rooms. We also include four additional variables, the price of elec-
tricity, natural gas, propane, and fuel oil, obtained from the US EIA’s 
State Energy Data System (43). The model for 2015 also includes a 
variable for the length of tenure by the respondent, indicated by the 
year that they moved into the home.

The 2015 survey included 5686 households, representing nearly 
120 million households at the time. The most recent survey, con-
ducted in 2020 and released in 2023, has nearly three times as many 
survey respondents, with 18,496 households selected to represent 
~123 million households across the country. Our target variable 
for estimation is household energy burden. There are several ways 
to define energy burden. For the main analysis, we define burden 
as the percentage of household annual income spent on house-
hold electricity, natural gas, propane, and fuel oil usage (excluding 
transportation).

In both the 2015 and 2020 RECS data, our initial analysis identi-
fied several outliers within each set. Specifically, some values for to-
tal household electricity consumption reported by respondents, in 
kilowatt- hours, reflected abnormally high consumption levels. The 
maximum annual electricity consumption for a household reported 
was 63,216 kilowatt- hours (kWh) in 2015 and 184,101 kWh in 2020. 
For reference, the average household in the United States consumed 
10,632 kWh in 2021 (44). We remove outliers from the dataset each 
year if the reported electricity consumption is above the 99th per-
centile, which was 33,309 kWh in 2015 and 33,544 kWh in 2020. 
Households that reported having installed solar panels on their home 
are also removed from the dataset, as on- site generation is included 
in their total reported electricity consumption. Consequently, there 
is no way to determine how much energy was drawn from the grid 
versus generated on- site. Only 1.39 and 3.51% of consumers reported 
solar installations in 2015 and 2020, respectively. In addition, we 
perform a log transformation of the dependent variable, energy bur-
den, to account for the skewness in responses.

We obtain information regarding the relevant variables for house-
holds in every census tract across the country from the ACS (45). 
Census tracts are small, statistical subdivisions of the United States 
containing, on average, about 4000 inhabitants. We consider ACS 
5- year estimates for 2015 and 2020, which have the benefit of increased 

reliability for census tracts with lower populations and small popu-
lation subgroups. Data for all demographic and household charac-
teristic variables are provided at the aggregate level for the census 
tracts in an effort to protect anonymity. For each variable, we know 
the number of households that exist in each subcategory of the 
variable. For example, in any one census tract, we know the 
number of households that identify as white, Black, American In-
dian or Alaska Native, Asian, Native Hawaiian or Other Pacific Is-
lander, mixed race, or other. For that same census tract, we also 
know the number of households that live in a one- unit detached 
household, one- unit attached, building with two to four apartments, 
building with five or more apartments, or other (e.g., mobile home, 
recreational vehicle (RV), and boat). Critically, we do not have in-
formation on the relationship between these distributions, e.g., of 
the households that identify as Black, we do not know how many of 
them live in each of the different household types.

Methods
When using the ACS data to estimate the average household energy 
burden described below, we aim to obtain estimates for each of the 
13 income brackets provided in both the RECS and ACS data. To 
achieve this without access to household- level data from the ACS, 
we estimate the distribution of households within input variables for 
which the distribution by income bracket is not given. These vari-
ables are housing type, year built, number of rooms, number of bed-
rooms, respondent age, number of household members, race, origin, 
highest education level achieved, age, and heating fuel used. To ob-
tain these estimates, we first use the RECS data to get the actual 
distribution of households for each variable by income across the 
entire United States. We sort the RECS data by the reported house-
hold income and then sum the number of households within each 
variable subcategory. This allows us to calculate the proportion of 
households within each income bracket for each of the variable sub-
categories. Table S1 reports these values for the 2015 RECS data, and 
table S2 reports these values for the 2020 RECS.

These data are then used to simulate the distribution of house-
holds within each income bracket for a given census tract. The fol-
lowing example walks through the process for determining the 
distribution of household types by income for census tract 9352 
in Butler County, Alabama, in 2020. We know the number of 
households in each income bracket, and we also know the number 
of households of each type (one- unit detached household, one-
unit attached, building with two to four apartments, building with 
five or more apartments, or other). Using the national distribution 
of household types by income, we fill in the matrix presented in 
table S3.

The first step is to apportion the households in each income 
bracket into each subcategory based on the national distribution. 
For example, to obtain the value of x1,a, the value of 56 households 
in census tract 9532 in Butler County, Alabama, that report an 
income between $10,000 and $14,999 is multiplied by the nation-
al proportion of households that report the same income and live 
in a one- unit attached type, in this case, 3.8%, obtained from the 
RECS data

This is repeated for every income bracket to obtain the estimated 
distributions by income bracket with the census tract. The results of 
this step are shown in table S4.

x1,a = 56 ∗ 3.8% = 2 households
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To preserve the empirical ACS data on how many households of 
each type exist within a census tract, the estimated distribution of 
households within each type is scaled so that the sum of households 
in each column is equal to the total number of households of that 
type that exist. For example, among the estimated households that 
are one unit attached in each income bracket, each value is multi-
plied by the total number of households that live in a one- unit at-
tached home in that tract and divided by the sum of the households 
allocated to that type for each income bracket

The results of this step are presented in table S5.
While this approach produces non- integer values for the number 

of households that exist in a subcategory, it allows us to calculate 
the proportion of households in each subcategory for each income 
bracket. Given that each subcategory is used in the regression mod-
el as a dummy variable in which the RECS data provide a zero or one 
value, we assume independence among each variable and use the 
proportion of households in the ACS data for each subcategory 
to estimate the average energy burden for a household in each in-
come bracket within the tract. For example, among households in 
the income bracket of $10,000 to $14,999, the value in each of 
the five subcategories is divided by the sum of households in the 
income bracket

The results of this step are presented in table S6.
Last, for the IECC of a given census tract, guidance from the 

Pacific Northwest National Laboratory is used to get the climate 
code for each county and then applied to all census tracts within 
each county (46). We also consider CDD and HDD data from the 
National Oceanic and Atmospheric Administration database at the 
county level for 2015 and 2020 to the census tracts within the coun-
ties (47). We obtain estimates of electricity, natural gas, propane, 
and fuel oil prices from the US EIA’s State Energy Data System (43).

To estimate the total household energy service costs across each 
census tract, we test several variations of regularized regression: 
ridge, LASSO, elastic net, and adaptive LASSO. Ridge regression, 
also known as L2 regularization, adds a penalty term to the linear 
regression cost function that discourages large coefficients, helping 
to mitigate multicollinearity issues. LASSO regression, on the other 
hand, applies L1 regularization, which encourages sparsity in the 
coefficient estimates, effectively selecting a subset of the most im-
portant features. Elastic net regression combines both L1 and L2 
penalties, striking a balance between feature selection and multicol-
linearity control. Last, adaptive LASSO enhances LASSO by giving 
different weightage to each feature, allowing it to automatically se-
lect the most relevant predictors for the specific dataset, thereby im-
proving model interpretability and performance. These regularized 
regression techniques are used to enhance the accuracy and gener-
alization of our model in predicting household energy service costs 
at the census tract level.

The data provided by the RECS are used as the training and 
test data for each regression model. There is a combination of 
continuous and discrete category variables from the data. To capture 

potential synergistic effects between the household heating fuel vari-
ables and the price of those fuels, linear interaction variables are 
created by multiplying each household heating fuel variable with 
each of the fuel price variables. As a result, there are 92 total input 
variables in each 2015 model and 97 total input variables in each 
2020 model. The difference in number of variables is a combination 
of the 2015 model including the length of tenure and the increase in 
discrete categories of income brackets from 2015 to 2020. In 2015, 
there are five income brackets (below $20,000; $20,000 to $39,999; 
$40,000 to $59,999; $60,000 to $99,999; and $100,000 onward). In 2020, 
there are 13 income brackets (below $10,000; $10,000 to $14,999; 
$15,000 to $19,999; $20,000 to $24,999; $25,000 to $29,999; $30,000 
to $34,999; $35,000 to $39,999; $40,000 to $49,999; $50,000 to 
$59,999; $60,000 to $74,999; $75,000 to $99,999; $100,000 to $149,000; 
and $150,000 onward).

Table S7 summarizes the key metrics for each model, including 
mean squared error (MSE), R2 out of sample, and the number of 
coefficients retained. These metrics provide valuable insights into 
the predictive accuracy, goodness of fit, and complexity of each 
model. MSE serves as an indicator of the model’s predictive preci-
sion, with lower values indicating better performance. R2 out of 
sample quantifies the proportion of the variance in the target vari-
able explained by each model, offering insights into their explana-
tory power. In addition, the number of coefficients retained offers an 
understanding of the model’s simplicity, as a smaller set of coeffi-
cients suggests a more interpretable model. The results in table S7 
allow us to compare the regularized regression models, aiding in the 
selection of the most effective model for estimating household en-
ergy burden across census tracts.

Adaptive LASSO is selected as the machine learning technique 
for this analysis because of its ability to discover relevant predictive 
variables and achieve high prediction accuracy while maintain-
ing very similar MSE and R2 values (48). The process is named 
“adaptive” LASSO because adaptive weights are used to penalize the 
different coefficients in the l1 vector. The method seeks to minimize

where yi are the estimated total energy service costs, xi,j are the val-
ues for each RECS input variable, and ŵj are the adaptive weight 

vectors defined as ŵj =
1

(

∣β̂j
ini
∣
)γ . Values for β̂j

ini
 are obtained through 

Ridge regression, which causes the technique to penalize coeffi-
cients with lower initial estimates more. This process is performed 
in R using the glmnet package (49).

We test several values of λ through a 10- fold cross- validation 
method. The selected value of λ is such that the error is within one 
SD of the minimum cross- validated error, which produces the most 
regularized model to improve the model generalization (50). Figure S2 
displays the cross- validation curves alongside visualizations of the 
coefficients as a function of different values of λ for both the 2015 
and 2020 models. From left to right, the vertical dashed lines are 
the log- λ values for the minimum SE and the λ for the most regu-
larized model.

After the model has been built and tested, we use the coefficients 
obtained for each variable and the transformed ACS data to get esti-
mates of the average energy burden for each income bracket in every 
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census tract across both 2015 and 2020. Figure S3 shows the com-
plete set of coefficients selected in each model and the percent 
change in energy burden for every one unit change in their value.

To account for the log transformation of energy burden, we ex-
ponentiate the output of the model, including an extra term for the 
residual MSE of the fitted regression, σ̂

2

2
 in the equation below (51)

where β̂n are the estimated coefficients from the previous equation 
and xn are the values for each variable using the ACS dataset.

Last, we calculate the average household energy burden for each 
census tract using the weighted average of the estimated household 
energy burden in each census tract. The weights are equal to the 
number of households in each income bracket taken directly from 
the ACS data. Once we have an estimate for the average household 
energy burden in each census tract, we map the contiguous United 
States using the geometries provided by the ACS data.

Our analysis concludes with a dynamic approach to identify the 
optimal allocation of assistance funds aimed at mitigating energy 
burdens. In this analysis, optimality is determined by the ability of 
the assistance funds to reach households with the highest energy 
burdens relative to all households in the contiguous United States. 
This approach is centered on evaluating the total funding necessary 
to lower the severest energy burdens down to an acceptable level. To 
achieve this, we set a national benchmark for the maximum allow-
able energy burden (for example, 20%) and calculate the total fund-
ing needed to ensure no household exceeds this threshold, akin to 
shaving off the peaks of energy burden across households. This 
method effectively reduces the highest energy burdens, ensuring 
that households facing the greatest financial strain from energy 
costs receive targeted assistance. If, for instance, the cap is placed at 
20%, then any household with an energy burden above this figure 
would get enough aid to bring their burden down to the set limit. 
Figure S5 provides a visual representation of the old, new, and our 
optimized formula allocation methods.

In determining individual household energy burdens, our analy-
sis assumes that all households in the same income bracket within 
a census tract have an equal energy burden. This assumption uses 
the simulated distribution of households within census tracts, de-
scribed in this “Methods” section, to achieve the highest granularity 
of estimation without accessing the secure census data on individu-
al houses.

We determine the amount of assistance that an individual house-
hold would receive by estimating their total energy service cost and 
reducing it so that their energy burden is reduced to the accepted 
threshold. The total cost of energy services is determined by multi-
plying a household’s estimated energy burden, from the model out-
put, by their reported income. Figure S4 shows the total program 
funds required to reduce the maximum energy burden across house-
holds between 50 and 6%.

In calculating the optimal allocation of funds to reduce energy 
burden across the country, we have chosen to not take a stance on 
the optimal relative weights of heating and cooling. This is consis-
tent with the current formula used in determining allocation percent-
ages by the Department of Health and Human Services. However, 
we do calculate what the relative weighting would need to be to 
achieve similar allocations to the North and South under the current 

allocations, defined as in fig. S6. Note that the distinction between 
North and South is decided by the states that would have received a 
greater percentage share under the old formula (North) and the 
states that would have received a greater percentage share under the 
new formula (South) (35). We first find the median burden as a re-
sult of heating expenditures, cooling expenditures, and all other en-
ergy expenditures for each state using the RECS data. We then 
calculate that proportion of burden that is attributable to heating, 
cooling, and all other energy- related expenditures for each state. For 
each household’s burden, we determine how much is a result of 
heating, cooling, and other expenditures using their state- level pro-
portions. A household’s energy burden is then

We adjust the value of β to weight the heating burden more than 
the other burdens until the allocations to the North and the South 
are nearly equal to the allocations in 2020. We find that β would 
need to be equal to 2.6, meaning that heating burden would need to 
be 2.6 times more valuable than cooling costs to justify the current 
allocation structure as optimal. Table S8 demonstrates the different 
funding amounts to the North and the South as a result of different 
β values.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
tables S1 to S8
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