
4.62.5

Future Scenarios of Design Rainfall
Due to Upcoming Climate Changes
in NSW, Australia

Iqbal Hossain, Shirley Gato-Trinidad, Monzur Imteaz and Scott Rayburg

Special Issue
Statistical Approaches in Climatic Parameters Prediction

Edited by

Dr. Iqbal Hossain and Dr. Abdullah Gokhan Yilmaz

Article Editor’s Choice

https://doi.org/10.3390/atmos15091101

https://www.mdpi.com/journal/atmosphere
https://www.scopus.com/sourceid/15838
https://www.mdpi.com/journal/atmosphere/stats
https://www.mdpi.com/journal/atmosphere/special_issues/XK6VFBB9D7
https://www.mdpi.com
https://doi.org/10.3390/atmos15091101


Citation: Hossain, I.; Gato-Trinidad,

S.; Imteaz, M.; Rayburg, S. Future

Scenarios of Design Rainfall Due to

Upcoming Climate Changes in NSW,

Australia. Atmosphere 2024, 15, 1101.

https://doi.org/10.3390/

atmos15091101

Academic Editor: Hanbo Yang

Received: 3 August 2024

Revised: 29 August 2024

Accepted: 5 September 2024

Published: 10 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Future Scenarios of Design Rainfall Due to Upcoming Climate
Changes in NSW, Australia

Iqbal Hossain * , Shirley Gato-Trinidad , Monzur Imteaz and Scott Rayburg

Department of Civil and Construction Engineering, Swinburne University of Technology,

Hawthorn 3122, Australia; sgatotrinidad@swin.edu.au (S.G.-T.); mimteaz@swin.edu.au (M.I.);

srayburg@swin.edu.au (S.R.)

* Correspondence: ihossain@swin.edu.au

Abstract: The occurrence of rainfall is significantly affected by climate change around the world.

While in some places this is likely to result in increases in rainfall, both winter and summer rainfall

in most parts of New South Wales (NSW), Australia are projected to decrease considerably due to

climate change. This has the potential to impact on a range of hydraulic and hydrologic design

considerations for water engineers, such as the design and construction of stormwater management

systems. These systems are currently planned based on past extreme rain event data, and changes in

extreme rainfall amounts due to climate change could lead to systems being seriously undersized (if

extreme precipitation events become more common and/or higher in magnitude) or oversized (if

extreme rainfall events become less frequent or decrease in magnitude). Both outcomes would have

potentially serious consequences. Consequently, safe, efficient, and cost-effective urban drainage

system design requires the consideration of impacts arising from climate change on the approximation

of design rainfall. This study examines the impacts of climate change on the probability of occurrence

of daily extreme rainfall in New South Wales (NSW), Australia. The analysis was performed for

29 selected meteorological stations located across NSW. Future design rainfall in this research was

determined from the projected rainfall for different time periods (2020 to 2039, 2040 to 2059, 2060 to

2079, and 2080 to 2099). The results of this study show that design rainfall for the standard return

periods was, in most cases, lower than that derived employing the design rainfall obtained from the

Australian Bureau of Meteorology (BoM). While most of the analysed meteorological stations showed

significantly different outcomes using the climate change scenario data, this varied considerably

between stations and different time periods. This suggests that more work needs to be performed at

the local scale to incorporate climate change predicted rainfall data into future stormwater system

designs to ensure the best outcomes.

Keywords: extreme rainfall; climate change; design rainfall; probability of occurrence

1. Introduction

Design rainfall, which is the most essential component for the design of stormwater
management infrastructure, is represented using an intensity–frequency–duration (IFD)
chart/table. The IFD curve or chart is the probabilistic representation of a rainfall event oc-
curring over a specific period of recurrence interval. This is critically important as engineers
use design rainfall to estimate the required capacities of nearly all stormwater infrastructure
types, from small-scale installations like gutters and roofs to large-scale infrastructure like
basins and dams. The correct sizing of this infrastructure has considerable implications
for flood mitigation and safety as well as the efficient use of resources with over-designed
systems being unnecessarily expensive and under-designed systems potentially leading to
loss of life and property.

For the determination of design rainfall, the IFD table/chart is traditionally developed
by analysing the frequency of extreme rainfall from historical data sets. While this approach
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has generally served well in the past, the speed and anticipated magnitude of future climate-
driven changes in rainfall suggest that it may no longer be appropriate [1]. This is because
climate change is and will continue to impact the connection between extreme rainfall
intensity, frequency, and duration over time. As such, continuing to use historical rainfall
data to design stormwater management systems will likely result in systems that are either
considerably under- or over-designed for future conditions [2–5].

The potential sensitivity of design rainfall to a changing climate has been widely
recognised by many researchers around the world [6–10]. For example, Yilmaz and Per-
era [10] discovered the need to determine future design rainfall from future climate data.
They developed non-stationary GEV models to investigate the potential influences of cli-
mate change on extreme rainfall and found no advantages over stationary GEV models
in Melbourne, Australia. Consequently, Yilmaz et al. [9] determined the role of IPO in
estimating the design rainfall in Victoria, Australia, and found higher rainfall intensities
for a long duration. However, the studies of Yilmaz and Perera [10] and Yilmaz et al. [9]
were based on only one meteorological station in Melbourne, Australia. Nevertheless, they
emphasized the requirements for spatial analysis of extreme rainfall data from multiple
observation stations. Furthermore, climate change impacts on the rainfall temporal patterns
were not considered by Yilmaz and Perera [10] and Yilmaz et al. [9]. However, it is one
of the critical aspects to be considered for future stormwater management infrastructure
design. Therefore, Hettiarachchi et al. [7] evaluated the influence of climate change on the
temporal patterns of rainfall events in Minnesota, United States. They observed that the
projected temporal patterns have the potential to increase flood risks by up to 170%. Again,
their study investigated only one rain gauge station, and extrapolation for large spatial
scales without further analysis is discouraged.

Consequently, the ambiguity in the determination of design rainfall in varied climates
due to changes in long-term weather patterns was investigated in West Yorkshire, England
by Fadhel et al. [6]. Their study discovered that the variability in the proportion of design
rainfall change varies significantly depending on the reference period of the bias correction.
Traditionally, bias correction on climatic model outputs is applied to account for errors
for the improvement of fitting and observations. Further analysis was conducted on the
spatial variability of extreme precipitation from individual meteorological stations as well
as from gridded data from Australia, Japan, Europe, and the USA by Myhre et al. [8]. Their
study discovered that extreme precipitation events will be doubled for each degree of
temperature increase. As a result, it is anticipated there will be more natural disasters, e.g.,
intensified floods, erosion of soil, landslides, and health impacts from impacts of climate
change [9,11]. Consequently, a better understanding of climate change influence on design
rainfall is essential for the derivation of design rainfall.

Traditionally, design rainfall is determined for several recurrence intervals from his-
torical rainfall without considering climate change impacts [10]. This assumption has
the potential to either over- or underestimate future design rainfall due to the impacts of
changing climate from anthropogenic sources [12]. When design rainfall is underestimated,
storm drainage infrastructures can be inadequate, leading to flooding in areas thought pro-
tected, which has been observed by many researchers [13,14]. Consequently, infrastructure,
property, and the environment in urban areas are at risk of flooding from the changing
rainfall pattern [15]. This outcome is further supported by an analysis of the recent trend in
Australian rainfall [16].

Although many researchers accepted the impacts of climate change on design rainfall
derivation, their influences are considered in the national guidelines in many countries
around the world. In Australia, stormwater management infrastructures are designed
using the design rainfall obtained from the Australian Bureau of Meteorology (BoM), which
is the national guideline in Australia. However, the impacts of climate change have not
been reflected by BoM [17]. As a result, currently designed stormwater management infras-
tructures accept the uncertainty to combat in the changing climate. From the motivation of
a better understanding of the climate change impacts on the probability of occurrence of



Atmosphere 2024, 15, 1101 3 of 14

extreme rainfall in NSW, Australia, this study investigates the deviation of daily design
rainfall due to climate change. The primary focus was to estimate the design rainfall using
the projected data and to assess the current Australian standard. This research empha-
sises the importance of the amalgamation of climate change impacts on design rainfall
in Australia. The study uses a large number of stations and time frames to identify the
spatial and temporal impacts of potential climate change and show these are large enough
to invalidate our current approach. Current knowledge on climate change influence on
extreme rainfall will be further strengthened by the outcomes of this research. The study
has the potential to understand the possible uncertainty in the stormwater management
infrastructure design that may evolve due to climate change. Consolidation of the current
knowledge on the development of the IFD curve/table is also established in this research.

2. Study Area and Data Sources

2.1. Study Area

To fulfill the objectives of this study, influences of climate change effects on design
rainfall were assessed in NSW, Australia. NSW is surrounded by three other Australian
states (Queensland to the north, Victoria to the south, and South Australia to the west), and
the Tasman and Coral Seas. The state consists of mixed land use (residential, industrial,
commercial, green, and open spaces) covering approximately 810,000 square kilometres.
The elevation of the state is between −6 m and 2129 m.

More than half of the state is arid and semi-arid with annual mean rainfall ranging
from 150 mm to 500 mm. For the study period (1900–2019), the daily extreme documented
rainfall was 415.2 mm. Figure 1 shows the annual average rainfall for 30-year climatology
(1991–2020) for NSW.

ff

−

 

Figure 1. Annual average rainfall for NSW over the 1991–2020 period.

The northwest region of the state receives less rainfall compared with the eastern
part as shown in Figure 1. As probable moisture sources are far from these areas, highly
variable rainfall is observed. Due to the higher elevation in the north-western portion of
the state, higher rainfall is observed in these areas. Average annual damage from floods in
NSW amounts to approximately $250 million, although individual events can cause much
more widespread damage, with the 2023 Lismore floods estimated to have caused nearly
AUD 10 billion in damages. Anthropogenic climate change and associated consequences
have the potential to increase the damage from increased extreme rainfall. A significant
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increase in the trend for short-duration extreme rainfall in NSW has already been observed
by Hazani et al. [18]. As a result, the impacts of damage from flooding and associated costs
of recovery will be further increased from aggravated extreme rainfall.

2.2. Rainfall Data

The objectives of this research were achieved using two daily rainfall data sets: his-
torical observed rainfall data and projected rainfall data. Historical observed rainfall data
(point data) from selected 29 weather stations were collected from the SILO database
(https://www.longpaddock.qld.gov.au/silo/ (accessed on 1 August 2020)). Historical data
were collected from the period of 1900 to 2019. As the data sets in the SILO are attained and
stored from the BoM, which is the Australian Federal Government Organisation responsible
for providing weather services across the country, and there were no missing data, these
data sets were deemed appropriate for this research. The stations were selected to ensure
a spread across the state. Figure 2 illustrates the locations of the selected meteorological
stations in NSW.
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Figure 2. The relative position of the rainfall stations in NSW, Australia that were used to generate

future scenarios of design rainfall due to upcoming climate change.

Evaluation of the climate change influence on design rainfall for efficient stormwa-
ter management systems requires accurate evaluation of climate models [19,20]. Smith
et al. [21] suggested three criteria for global climate model (GCM) selection. They include
the long-term availability of projected data, spatially fine resolution of model data, and
validity of model outputs using statistical techniques. In this research, future projected
daily rainfall was collected from AdaptNSW (https://www.climatechange.environment.
nsw.gov.au/climate-projections-used-adaptnsw (accessed on 1 August 2020). The data in
AdaptNSW use the NARCLiM (NSW and Australian Regional Climate Modelling, Version
1.5) projections. The NSW government-led project, NARCLiM, generates detailed climate

https://www.longpaddock.qld.gov.au/silo/
https://www.climatechange.environment.nsw.gov.au/climate-projections-used-adaptnsw
https://www.climatechange.environment.nsw.gov.au/climate-projections-used-adaptnsw
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projections using scientifically reviewed methods and international best practices. As the
projections from NARCLiM use internationally recognised GCMs, data from NARCLiM
were used in this research. Data were accessed from this source and portioned into four
future climate periods: 2020–2039, 2040–2059, 2060–2079, and 2080–2099.

As limitations exist in NARCLiM V1.0 (released in 2014), projected data from NAR-
CLiM V1.5 were extracted and analysed to fulfill the objectives of this research. NARCLiM
V1.5 is the second generation of NSW and Australian Regional Climate Modelling project
for producing projected climate data in southeast Australia, i.e., at a regional scale. The
projection of climate data in NARCLiM V1.5 is generated based on AR5 (5th Assessment
Report) of the Intergovernmental Panel on Climate Change (IPCC). The spatial resolution
of the collected data from NARCLiM V1.5 is 50 km for the emission scenario RCP4.5.

3. Methods

In this research, daily extreme rainfall was used to evaluate the influence of climate
change effects on design rainfall. For the accomplishment of the objective, project rainfall
from 2020 to 2099 was used, and probability of occurrence of extreme rainfall for different
recurrence intervals was derived and compared with the value provided in the national
guidelines from the Australian Bureau of Meteorology (BoM). The overall procedure can
be summarised as follows:

• Collection and treatment of historical rainfall data;
• Collection and treatment of future rainfall data;
• Application of frequency analysis to the projected data;
• Evaluation of the outcomes with the current Australian standard.

The overall structure of the applied method is the same as the framework developed
by Hossain et al. [22] and shown in Figure 3. However, Hossain et al.’s [22] study did
not consider the systematic analysis and influence of data length in the design rainfall
calculation.

ff
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Figure 3. Framework for identifying the influence of climate change effects on design rainfall [22].

The processes inside the red dotted box are performed by the Australian Bureau of Meteorology. The

blue arrows show how the process progresses from one step to the next.
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The collected rainfall data from the NARCliM are in daily time step resolutions.
Consequently, the derivation of extreme rainfall from daily data is the prerequisite for
the frequency analysis. The block maxima (BM) approach and the peak over threshold
(POT) approach are the commonly applied techniques in obtaining extreme value from
time series data sets [10,23]. Amongst these two approaches, BM is the most frequently
adopted technique in hydrological applications. In the BM approach, the annual maximum
value from the available time series data is obtained. The barrier that most hinders the
application of the POT series is the selection of the appropriate threshold value. If the
threshold is too high, it will increase the variance in the data sets, whereas too low a
threshold leads the data sets to be dependent on others [24]. As the BM technique is a
simple and commonly employed technique in hydrologic applications, the method was
applied for deriving extreme data sets in this study.

Determination of design rainfall for various recurrence intervals is usually obtained
from the intensity–frequency–duration (IFD) curves/tables. As linear and non-linear mod-
els are not capable of estimating extreme vents [25], values of the IFD curves/tables are
obtained by adopting conventional frequency analysis. Traditionally, frequency analysis is
applied to understand the probability of occurrence of extreme events. As one or two statis-
tical distributions are not able to demonstrate the complete temporal and spatial form of
hydrological extremes, several statistical distributions are investigated by many researchers
around the world. As a result, the conventional flood hazard analysis is performed by
applying the general extreme value distribution (GEVD), which is the combination of
three distributions.

In this study, the GEVD is fitted to historical and projected extreme rainfall for the
selected meteorological stations in NSW, Australia. The traditional probability density
function of the GEVD can be demonstrated by Equation (1), as adopted by many re-
searchers [9,22,26].

f (x) = exp

{

−

[

1 + ξ

(

y − µ

σ

)− 1
ξ

]}

(1)

where
{

y : 1 + ξ
(

y−µ
σ

)

> 0
}

, µ, σ and ξ are the location, scale, and shape parameters

respectively for the GEVD.
Although numerous techniques for the estimation of GEVD are available in the litera-

ture, the L-moments method is a widely used technique for solving hydrologically extreme
problems. Therefore, the L-moments method is adopted in this study.

The design rainfall depths using the GEVD were estimated by adopting the established
Equation (2) [27]:

RT =

{

µ̂ − σ̂
ξ̂
×

[

1 − (−log(1 − p))ξ̂
]

f or ξ̂ ̸= 0

µ̂ − σ̂ × log(−log(1 − p)) f or ξ̂ = 0
(2)

where RT is the rainfall depth for T year return period, T = 1/p.

4. Results and Discussion

This study evaluated the influence of climate change on design rainfall in NSW,
Australia. The evaluation was first performed by determining the statistics of the extreme
rainfall. Statistical comparison of the historical extreme rainfall with different time periods
of projected rainfall is shown in Table 1.

It is obvious from Table 1 that the GCM model underestimates the extreme rainfall
compared with the historical observations. For example, observed extreme rainfall in station
#48031 was 312 mm, whereas the projected rainfall for the same station was 120.91 mm,
161.39 mm, 108.79 mm, and 119.12 for the periods of 2020–2039, 2040–2059, 2060–2079, and
2080–2099 respectively. This statement is true for most of the stations. In addition, there
is a variation in the extreme rainfall in the project data with time periods. The coefficient
of variation (CV) was applied to identify the overall precision of extreme data sets. From
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Table 1, it is apparent that the CV for most of the stations was higher for the historical
extreme rainfall contrasting with extreme values of the projected rainfall. Consequently,
projected extreme rainfall shows relatively lower variability in the mean compared with
the historical extreme rainfall. This could be one of the main reasons for having a higher
extreme value for historical rainfall.

Table 1. Climate change effects on the statistics of extreme rainfall.

Station
No.

2020–2039 2040–2059 2060–2079 2080–2099 1900–2019

Maximum CV Maximum CV Maximum CV Maximum CV Maximum CV

48027 125.11 0.34 98.38 0.31 111.33 0.52 130.81 0.42 113.20 0.45
48031 120.91 0.35 161.39 0.45 108.79 0.42 119.12 0.37 312.00 0.59
49002 44.16 0.35 44.44 0.36 68.46 0.45 38.04 0.26 93.30 0.43
50031 86.66 0.35 106.62 0.36 82.21 0.32 73.28 0.26 133.90 0.41
50052 68.73 0.31 76.78 0.34 85.82 0.34 81.06 0.32 127.20 0.42
51049 86.31 0.25 150.13 0.48 80.11 0.28 102.73 0.23 226.80 0.49
52020 101.70 0.33 111.52 0.42 109.11 0.44 154.79 0.52 208.00 0.42
54003 185.71 0.49 137.62 0.39 123.10 0.33 109.27 0.38 194.30 0.43
55049 117.31 0.30 138.16 0.40 135.37 0.34 125.91 0.37 136.70 0.32
56018 95.21 0.22 125.22 0.37 113.47 0.32 112.23 0.30 140.00 0.34
56032 89.60 0.25 67.93 0.23 89.10 0.37 98.44 0.35 190.60 0.40
58158 188.54 0.39 129.28 0.28 176.06 0.41 162.90 0.29 338.60 0.46
60085 128.96 0.24 144.40 0.26 183.05 0.38 240.75 0.40 415.20 0.46
61288 141.97 0.32 148.15 0.32 124.92 0.32 172.26 0.38 184.10 0.48
63005 66.49 0.19 72.50 0.29 83.64 0.29 73.73 0.23 108.70 0.36
64008 142.90 0.28 171.57 0.34 146.94 0.33 89.97 0.22 167.60 0.38
68192 107.43 0.30 138.77 0.44 115.01 0.38 117.78 0.36 198.70 0.47
69132 133.73 0.46 212.77 0.65 177.43 0.59 131.78 0.39 201.00 0.42
70005 89.92 0.34 93.59 0.35 81.69 0.34 105.24 0.47 249.40 0.49
70263 62.66 0.25 69.06 0.25 101.83 0.49 74.99 0.26 148.20 0.42
70278 86.47 0.33 74.22 0.34 75.47 0.31 124.61 0.51 107.20 0.39
71041 80.16 0.22 97.36 0.26 113.87 0.27 104.06 0.30 165.50 0.36
72043 92.24 0.20 98.90 0.28 116.75 0.27 90.84 0.26 164.60 0.34
72150 83.03 0.35 70.76 0.27 93.14 0.38 68.07 0.29 110.80 0.40
73007 66.52 0.18 102.00 0.34 90.15 0.27 88.98 0.30 162.50 0.45
73014 85.59 0.28 90.73 0.36 130.08 0.49 101.72 0.30 110.70 0.35
74106 62.56 0.30 69.03 0.32 78.21 0.43 75.92 0.40 117.70 0.41
75032 111.85 0.54 68.42 0.32 66.15 0.32 105.71 0.51 123.00 0.46
75041 101.94 0.46 71.44 0.32 69.18 0.31 57.09 0.28 149.80 0.53

The geographic features of the area, climatic patterns, and local weather conditions
are the probable reasons for such high spatial variations. Areas near the coast usually
have higher extreme rainfall compared to the inland due to moisture-laden winds from
the Pacific Ocean. The average annual rainfall for the latest 30-year climatology (1991 to
2020) was also higher near the coast, as shown in Figure 1. Therefore, historical maximum
extreme rainfall (415.20 mm) and minimum (93.30 mm) were observed near to the coastal
and inland stations, respectively, as illustrated in Table 1. Moreover, the combined influence
of La Niña and negative Indian Ocean Dipole (IOD) has a substantial impact on the extreme
rainfall throughout eastern Australia [28]. As the influence of oceanic temperature variation
(e.g., La Niña, IOD, etc.) is not the same across the state, the spatial variation in extreme
rainfall is significant. In addition, tropical cyclones and thunderstorms, which vary across
NSW, have considerable influence on the spatial variability of extreme rainfall, as shown in
Table 1.

Likelihood estimation of parameters for GEVD is essential for the determination of
the probability of exceedance of design rainfall. Although different parameter estimation
techniques of the GEVD could be found in the literature, the L-moment parameters estima-
tion technique is commonly used in the design rainfall estimation [26]. Also, estimation of
design rainfall in Australia BoM applied the L-moments technique. Therefore, the method
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has been applied in this research to estimate the parameters of the GEVD. The estimated
shape parameters for all the meteorological stations are shown in Table 2.

Table 2. Climate change effects on the shape parameter of the GEV distribution.

Station # 1900 to 2019 1920 to 2039 1940 to 2059 1960 to 2079 1980 to 2099

48027 0.1 0.0 0.0 0.2 0.0
48031 0.2 −0.2 0.4 −0.1 0.0
49002 0.0 0.0 −0.1 0.2 −0.2
50031 0.1 −0.1 0.2 −0.2 −0.2
50052 0.0 −0.1 −0.2 0.0 0.0
51049 0.1 −0.4 0.1 −0.4 0.0
52020 0.1 0.0 0.1 0.1 0.2
54003 0.1 0.4 0.2 0.1 0.1
55049 0.0 0.1 0.2 0.1 0.1
56018 0.0 −0.1 0.1 0.1 −0.1
56032 0.2 0.1 −0.7 0.0 0.0
58158 0.0 0.1 −0.1 0.0 0.1
60085 0.1 −0.3 0.0 0.2 0.3
61288 0.2 0.0 0.2 −0.1 0.1
63005 0.0 0.0 −0.1 0.1 0.0
64008 0.1 −0.3 0.1 0.0 −0.2
68192 0.2 −0.1 0.0 0.1 0.0
69132 0.1 0.2 0.3 0.4 0.0
70005 0.2 0.0 −0.2 −0.2 0.2
70263 0.2 −0.3 0.0 0.0 −0.2
70278 0.1 0.0 −0.1 0.0 0.4
71041 0.1 −0.1 0.2 0.0 −0.1
72043 0.0 −0.1 0.0 0.1 0.0
72150 0.2 0.1 0.0 0.3 −0.3
73007 0.2 −0.4 −0.1 0.2 −0.4
73014 0.0 0.1 0.1 0.2 0.0
74106 0.1 0.1 −0.3 0.2 0.0
75032 0.1 0.4 −0.1 −0.2 0.4
75041 0.2 0.3 −0.2 −0.3 −0.1

The analysis of the research found that the shape parameter of the GEVD is either zero
or positive for historical rainfall. Therefore, the distribution is either Gumbel type (for zero
shape parameter) type or Fréchet (for positive shape parameter) distribution. However,
for the extreme data of the projected rainfall, the distribution may be either Gumbel or
Fréchet or Weibull (for negative shape parameter). Nevertheless, there is inconsistency in
the distribution type amongst the data sets. For example, the historical extreme rainfall
data set for station #48027 follows the Fréchet type distribution. On the other hand, the
same station follows the Gumbel type distribution for the period of 1920 to 2039, 1940 to
2059, and 1980 to 2099, and the Fréchet type distribution for the period of 1960 to 2079.
This may be due to the potential climate change variables considered for deriving the
projected rainfall.

Estimation of return levels for different recurrence intervals for both historical and
projected extreme rainfall are shown in Table 3a,b. The comparison provides information
for the rainfall depth for 2-year, 5-year, 10-year, 20-year, 50-year, and 100-year return periods
for a 24-hour duration. For this duration, the rainfall depth increases as the return period
increases. However, there exists variation in the estimated depths between the historical
and projected extreme rainfall.



Atmosphere 2024, 15, 1101 9 of 14

Table 3. Variation in Return Level due to Climate Change NSW, Australia.

a. Variation in Return Level due to Climate Change NSW, Australia.

Station
#

1900 to 2019 2020 to 2039

2 Yr 5 Yr
10
Yr

20
Yr

50 Yr 100 Yr 2 Yr 5 Yr 10 Yr
20
Yr

50 Yr
100
Yr

48027 38.5 54.9 66.8 79.0 96.3 110.3 57.9 76.6 89.6 102.4 119.7 133.1

48031 53.5 78.7 100.9 127.7 172.4 215.4 62.8 83.8 95.7 106.0 117.6 125.2

49002 35.5 50.1 59.8 69.3 81.7 91.1 22.1 29.6 34.7 39.7 46.3 51.3

50031 51.9 72.1 86.5 101.1 121.1 137.1 51.9 69.5 80.2 89.8 101.4 109.5

50052 40.5 56.2 66.4 75.9 88.0 96.8 41.2 53.9 61.8 69.1 78.2 84.6

51049 45.1 63.3 78.0 94.5 120.0 142.7 63.9 77.1 82.9 86.9 90.5 92.4

52020 56.3 77.9 92.9 107.8 127.9 143.6 56.4 74.9 87.3 99.2 114.9 126.8

54003 55.1 75.2 91.5 109.7 137.8 162.8 54.2 71.1 87.8 109.8 150.7 194.2

55049 54.4 70.9 81.9 92.5 106.4 116.9 60.7 78.7 91.5 104.6 122.8 137.4

56018 56.5 74.5 87.0 99.3 116.0 128.9 62.1 75.4 83.7 91.3 100.6 107.2

56032 60.3 83.1 100.1 117.9 143.6 164.8 49.0 60.7 68.8 76.9 87.8 96.4

58158 135.1 196.3 237.7 277.9 331.0 371.4 86.6 119.0 143.0 168.1 204.0 233.7

60065 109.2 156.2 189.9 224.3 272.0 310.3 91.9 111.9 122.3 130.4 139.0 144.1

61288 61.7 90.8 112.6 135.8 169.5 197.8 75.7 98.9 114.1 128.5 147.0 160.7

63005 45.5 60.9 71.8 82.8 97.8 109.7 44.9 53.0 58.3 63.4 69.9 74.7

64008 65.4 89.3 106.3 123.7 147.8 167.1 86.4 108.1 119.4 128.4 137.8 143.5

68192 69.7 101.8 125.7 150.7 186.6 216.3 62.1 79.9 90.1 98.9 109.0 115.7

69132 64.3 88.8 106.3 123.9 148.3 167.7 56.2 82.6 103.0 125.1 157.9 186.0

70005 54.7 76.7 94.1 113.4 142.6 168.2 44.3 58.7 68.2 77.1 88.5 97.0

70263 52.0 72.2 87.8 104.6 129.4 150.6 44.3 54.2 59.3 63.3 67.4 69.9

70278 44.8 61.9 73.7 85.2 100.7 112.6 45.7 60.7 70.5 79.8 91.7 100.5

71041 67.4 90.6 107.0 123.6 146.3 164.4 53.7 65.1 72.0 78.2 85.6 90.8

72043 53.8 70.2 81.5 92.9 108.3 120.2 63.2 75.4 82.8 89.3 97.0 102.3

72150 39.9 54.6 65.9 78.3 96.6 112.4 40.1 53.8 63.9 74.4 89.2 101.4

73007 53.9 75.3 93.0 113.3 145.3 174.4 50.9 58.6 62.2 64.8 67.3 68.6

73014 50.2 67.3 78.4 88.7 101.8 111.4 48.6 61.3 70.6 80.2 93.7 104.8

74106 38.9 53.9 64.2 74.5 88.2 98.9 34.3 44.3 51.7 59.4 70.4 79.5

75032 39.0 55.7 67.8 80.3 97.9 112.1 33.4 47.3 61.1 79.2 112.6 148.0

75041 32.5 46.7 58.6 72.4 94.4 114.7 35.8 50.1 62.9 78.4 104.6 130.2

b. Variation of Return Level due to Climate Change NSW, Australia.

Station
#

2040 to 2059 2060 to 2079 2080 to 2099

2
Yr

5
Yr

10
Yr

20
Yr

50
Yr

100
Yr

2 Yr 5 Yr
10
Yr

20
Yr

50
Yr

100
Yr

2 Yr 5 Yr
10
Yr

20
Yr

50
Yr

100
Yr

48027 52.1 68.1 79.1 89.8 104.0 114.9 42.4 65.0 83.0 103.1 133.8 160.9 56.6 79.9 95.7 111.2 131.7 147.4

48031 57.2 79.2 99.4 124.5 168.0 211.3 55.9 79.3 93.3 105.8 120.7 131.0 63.1 85.5 99.7 112.9 129.2 141.1

49002 24.0 32.4 37.2 41.4 46.2 49.4 26.9 38.9 48.1 58.1 73.0 85.7 24.2 30.0 33.0 35.4 37.9 39.5

50031 48.6 65.1 78.0 92.1 113.4 131.9 47.7 62.1 70.1 76.7 84.0 88.7 50.9 63.0 69.5 74.7 80.4 83.9

50052 44.7 59.1 67.2 74.2 82.1 87.3 40.6 53.8 62.6 71.2 82.3 90.7 43.4 56.8 66.0 75.0 86.9 96.1

51049 51.4 73.9 90.5 107.9 132.9 153.4 56.8 70.1 76.3 80.7 84.9 87.2 60.1 73.3 82.3 91.0 102.5 111.3

52020 50.8 72.1 87.2 102.4 123.3 139.8 52.1 75.3 91.9 108.8 132.1 150.8 54.7 82.6 104.8 129.2 166.1 198.4

54003 52.7 70.1 84.5 101.0 127.2 151.0 55.5 72.2 84.0 95.8 112.0 124.7 56.9 78.5 94.0 109.8 131.7 149.4

55049 60.0 83.5 101.5 121.0 149.7 174.3 64.5 85.2 99.6 114.0 133.4 148.6 58.2 78.9 93.9 109.2 130.5 147.7

56018 59.5 81.0 96.2 111.6 132.5 149.1 58.9 76.9 89.9 103.5 122.5 138.0 62.4 80.6 91.6 101.4 113.0 121.0

56032 54.0 62.6 65.7 67.5 68.9 69.5 50.8 69.7 81.7 92.9 106.9 117.1 53.6 72.1 84.9 97.4 114.2 127.3

58158 78.8 100.2 113.3 125.0 139.1 148.9 76.7 106.8 126.2 144.5 167.6 184.5 80.5 101.6 116.6 131.9 153.0 169.8

60065 75.0 92.3 103.7 114.6 128.8 139.4 77.0 105.0 126.6 150.1 185.1 215.2 92.0 123.1 150.6 183.7 239.0 292.2

61288 67.7 87.4 103.1 120.6 147.4 171.0 77.1 101.7 116.7 130.3 146.6 157.9 77.6 106.7 128.8 152.5 187.0 216.2

63005 44.7 57.6 65.6 72.9 81.9 88.2 43.8 55.9 64.7 73.6 86.1 96.1 47.6 58.2 64.9 71.2 79.1 84.9

64008 76.2 99.3 116.6 135.0 161.5 183.7 68.7 88.8 102.7 116.6 135.3 149.9 63.5 76.5 83.6 89.5 95.9 100.0

68192 62.2 89.8 108.6 127.1 151.8 170.7 54.8 75.2 90.1 105.4 126.9 144.3 61.2 82.5 96.8 110.7 129.0 142.9

69132 54.8 88.7 119.2 156.6 220.3 282.7 54.0 81.5 108.6 144.2 210.0 279.5 64.0 89.3 106.5 123.4 146.0 163.3

70005 54.0 71.3 80.6 88.3 96.7 102.0 49.1 64.6 73.1 80.1 87.7 92.5 42.9 62.8 78.6 96.0 122.3 145.2

70263 46.0 57.2 64.6 71.8 81.1 88.1 48.8 73.4 89.6 105.2 125.2 140.2 46.4 57.7 64.0 69.3 75.3 79.2

70278 45.1 60.4 69.9 78.5 88.9 96.3 42.9 56.2 65.3 74.3 86.5 96.0 39.0 55.7 71.3 90.9 125.1 159.5

71041 53.6 66.7 76.8 87.9 104.3 118.5 63.0 78.7 88.6 97.8 109.3 117.5 54.9 70.4 79.8 88.3 98.4 105.5

72043 56.2 71.6 82.0 92.1 105.5 115.7 65.4 82.5 95.1 108.2 126.9 142.4 58.9 73.8 83.3 92.2 103.3 111.4

72150 42.7 54.0 61.3 68.0 76.5 82.6 44.1 59.1 72.1 87.3 112.2 135.5 43.3 54.6 60.2 64.6 69.0 71.6

73007 50.6 67.1 77.2 86.5 97.7 105.6 46.6 57.6 66.1 75.1 88.5 99.8 59.8 74.9 81.8 86.9 91.6 94.2

73014 43.6 58.6 69.2 79.7 94.0 105.1 45.0 65.9 83.2 103.1 134.7 163.5 53.1 68.5 78.4 87.7 99.4 108.0

74106 39.7 50.7 56.4 60.8 65.4 68.2 33.2 46.2 56.8 68.8 87.3 104.0 33.4 46.4 55.1 63.5 74.4 82.6

75032 38.7 50.6 57.5 63.4 70.2 74.8 40.3 52.1 58.5 63.8 69.6 73.3 31.9 44.5 56.8 72.8 102.2 133.1

75041 44.3 57.5 64.4 70.0 75.8 79.4 45.4 58.1 64.4 69.2 74.1 77.0 36.2 46.0 52.1 57.7 64.5 69.3
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A visual representation of the comparison for the return level estimation is shown in
Figure 4 in the form of a heatmap. In Figure 4, station numbers are shown in rows and
recurrence intervals are shown in columns. The dark colour represents the higher value, and
the light colour represents the lower value. The hierarchical dendrogram of the heatmap is
shown on the left side (illustrated by lines) of the colour map using average linkage and
clearing distance. Figure 4 demonstrates that the rainfall stations are grouped according to
the number of similar magnitudes of design rainfall for different recurrence intervals. The
number of higher magnitudes of design rainfall for stations #58158 and #60065 are relatively
greater compared with the other stations, indicating the spatial discrepancy of the extreme
rainfall. That is why these stations are put together at the bottom of the Figure. A similar
explanation is applicable for the stations (#710 and #73007) with the lower magnitudes of
design rainfall as depicted in Figure 4.

ff

tt

 

ffFigure 4. Visual representation of return level estimation for different recurrence intervals for all the

periods of extreme rainfall. Symbols ‘a’ represents 1900–2019, ‘b’ represents 2020–2039, ‘c’ represents

2040–2059, ‘d’ represents 2060–2079, and ‘e’ represents 2080–2099. The lines on the left of the figure

represent the dendrogram which shows the structure of the cluster for rainfall stations.

For most of the meteorological stations, the probability of occurrence of projected
rainfall is lower than the historical rainfall. In several stations, substantial variation was
identified. There is also significant variation amongst the projection periods. For example,
the 100-year return level for station #48031 is 172.4 mm. However, 100-year return levels
for the same station are 125.2 mm, 211.3 mm, 131.0, and 141.1 mm for the periods of 2020
to 2039, 2040 to 2059, 2060 to 2079, and 2080 to 2099, respectively, as shown in Table 3a,b.
This variation is due to the climate change impacts on the design rainfall. Influences of
climate change were not considered in determining the design rainfall. Projected rainfall
is determined by considering different emission scenarios for different time periods. In-
trinsically, 312 mm of historical extreme rainfall was observed for station #48031, whereas
120.91 mm, 161.39 mm, 108.79 mm, and 119.12 mm rainfall was considered for the periods
of 2020–2039, 2040–2059, 2060–2079, and 2080–2099.

Similar findings were observed in previous studies where different rainfall depths
and intensities were derived from the climate modelling outputs [29,30]. Simonovic and
Peck [31] also derived higher rainfall depth for the higher recurrence intervals from the
historical extreme rainfall compared with projected rainfall. Therefore, extreme rainfall
in NSW will be significantly affected by climate change, and, hence, estimation of design
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rainfall that is used for stormwater management infrastructures design should adopt
impacts of climate change.

Further comparison of the climate change impacts on the design rainfall is shown in
Figure 5. The assessment is shown between the design rainfall derived from the extreme
data of the projected rainfall and the design rainfall from the Australian BoM for the
same meteorological stations. It should be noted that the derivation of design rainfall by
Australian BoM did not consider the influence of climate change. The daily design rainfall
due to potential climate change in NSW will decrease as illustrated in Figure 5 for the
selected four stations. An analogous trend was observed for other meteorological stations
as well. Apparently, significant influences exist on the design rainfall due to climate change
and the design rainfall in NSW will decrease from probable climate change. However, the
magnitude of the changes depends on the length of the data periods, as shown in Figure 5.
A similar observation was also found by Khastagir et al. [32]. In addition, the variation in
the magnitude is higher for the high recurrence intervals and lower for the low recurrence
interval, as revealed in Figure 5. The findings are also coherent with the findings examined
by Meresa et al. [33].

 

ff
ff

tt

ffi

ffi

Figure 5. Design rainfall comparison between ARR and projected rainfall for different time periods

for four selected meteorological stations. The symbols (A–D) are for different meteorological stations

as shown.
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The number of stations showing decreased or increased design rainfall compared to
the ARR design rainfall is shown in Table 3. The number of stations showing decreased
design rainfall is similar for all the future rainfall design rainfall scenarios. The maximum
number of stations showing increased design rainfall is in the 2080–2099 design rainfall
scenarios for the 100-year event. Therefore, the potential future design rainfall for 24 h
duration will be decreased in most of the areas in NSW, as demonstrated in Table 3.

The outcomes of the study suggested that future rainfall intensity will cause decreased
peak runoff and flood potentiality in NSW. It is well-known that stormwater management
infrastructures are designed based on design rainfall derived from historic extreme rainfall.
This assumption leads to under-design or over-design due to climate change and the
consequences of the shift in frequency and occurrence of extreme rainfall. Furthermore, the
design rainfall obtained from projected extreme rainfall will make this system uncertain for
future stormwater management. However, inconsistent observations were found by other
researchers. For example, Kundzewicz et al. [34], Nile et al. [35], and Hassan et al. [36]
found increased severity and risks of flooding due to increased extreme rainfall from
climate change. The reason for the dissimilar observation may be due to the changes in the
geographic regions. In contrast, the outcomes of this study are consistent with the research
performed in similar geographical locations [37]. Therefore, it is essential to understand the
influence of climate change impacts on design rainfall estimation on a regional scale. The
findings of this research have the potential to address risks and uncertainty arising from
inadequate drainage systems.

It is worth noting that the selection of the number of extreme data points substantially
impacts the modelling outcomes. As the extreme data sets for projected rainfall were
estimated from data from a twenty year period, there is the potential for a more stable
and reliable parameter estimation of the GEV distribution. Furthermore, fewer extreme
values (20 from 20 years) can reduce the sensitivity of the outliers, which may alter the
approximation of extreme quantiles. In addition, a lesser number of extreme values help
avoid the overfitting of the GEV method. However, a lesser number of extreme values may
represent the tail behaviour of the distribution, inaccurately leading to misinterpretation of
the extreme value theory. There may be bias in the magnitude of the estimated parameters,
leading to a reduction in the predictive capability of the methods. Hence, the selection of
appropriate block length is a balance between extracting sufficient extreme data points to
fit the GEV distribution accurately and preventing the demise of suitable information or
unnecessary computational difficulty.

5. Conclusions and Recommendations

In this research, the impacts of climate change on daily design rainfall in NSW, Aus-
tralia have been investigated. Daily observed rainfall from 1900 to 2019 and rainfall outputs
for different time periods (2020 to 2039, 2040 to 2059, 2060 to 2079, and 2080 to 2099) from
GCM (CSIRO BOM ACCESS 3.0) were analysed to derive design rainfall. For the assess-
ment of computed design rainfall from the GCM, projected rainfall was compared with the
design rainfall from the Australian BoM. Based on the outcomes of this study, the following
general conclusions can be drawn:

• Design rainfall in most parts of NSW will be significantly impacted by climate change
impacts; however, the magnitude of changes varies amongst the recurrence intervals.

• Most of the regions in NSW will be facing decreased rainfall from climate change,
leading to potential drought.

• The decrease in design rainfall for 100 years recurrence interval ranges from 2.5% to
67.6%, whereas the increase in design rainfall would be between 1.2% to 35.9%. This
outcome changes with the changes in the data periods. Nevertheless, a decrease in
design rainfall was observed for most of the areas.

• Stormwater drainage systems designed considering historical rainfall will be under-
designed or over-designed, leading to uncertainty in flood mitigation. The extent of
this uncertainty depends on climate models and return periods.
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The selection of block size for the extraction of maxima is subjective leading to the
uncertainty of the magnitude of the parameters of the GEV distribution. The use of different
numbers of extreme data points has the potential to significantly impact the interpretation
of extreme value analysis. The properties of the data, definite aims of the study, and
practical considerations should be given priority in selecting the number of extreme data
for GEV analysis.

For a generic conclusion, advanced investigation is required for the accurate deriva-
tion of design rainfall required for the design of stormwater infrastructures in NSW. The
standard and guideline for the extraction of design rainfall from the Australian BoM should
be revised to encompass climate change impacts. It is worth noting that the investigation
of this research is performed on daily extreme rainfall. Additionally, analysis of sub-daily
rainfall data should be performed for an improved understanding of climate change.
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