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Abstract
Selecting climate model projections is a common practice for regional and local studies. This process often relies on local 
rather than synoptic variables. Even when synoptic weather types are considered, these are not related to the variable or 
climate impact driver of interest. Therefore, most selection procedures may not sufficiently account for atmospheric dynam-
ics and climate change impact uncertainties. This study outlines a selection methodology that addresses both these short-
comings. Our methodology first optimizes the Lamb Weather Type classification for the variable and region of interest. In 
the next step, the representation of the historical synoptic dynamics in Global Climate Models (GCMs) is evaluated and 
accordingly, low-performing models are excluded. In the last step, indices are introduced that quantify the climate change 
signals related to the impact of interest. Using these indices, a scoring method results in assessing the suitability of GCMs. 
To illustrate the applicability of the methodology, a case study of extreme heat in Belgium was carried out. This framework 
offers a comprehensive method for selecting relevant climate projections, applicable in model ensemble-based research for 
various climate variables and impact drivers.
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1  Introduction

The latest release of the Intergovernmental Panel on Cli-
mate Change’s (IPCC) Sixth Assessment Report [AR6, 
IPCC (2023)] is heavily based on the sixth generation of the 
Coupled Model Intercomparison Project (CMIP), denoted as 
CMIP6 (Eyring et al. 2016). Important enhancements were 
made to the CMIP6 Global Climate Models (GCMs) leading 

to an overall better performance than previous CMIP gen-
erations as documented by e.g. Fan et al. (2020) and Brands 
(2022a), and a higher global climate sensitivity (Zelinka 
et al. 2020; De et al. 2022). The IPCC (2023) even states 
that “robust climate information is increasingly available at 
regional scales for impact and risk assessments”, indicating 
that GCMs are becoming sufficiently advanced to be used 
for decision-making on a regional scale. However, the use 
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of GCM data for local-scale analyses should be approached 
with caution (Gualdi et al. 2013).

For the climate of Europe, numerous CMIP6 models have 
undergone thorough evaluation, as evidenced by compre-
hensive studies, such as Brunner et al. (2020) and Brands 
(2022a). The outcomes of these analyses have been included 
in a selection procedure for dynamic downscaling proposed 
by the EURO-CORDEX (Coordinated Regional Climate 
Downscaling Experiment) community (Sobolowski et al. 
2023). Their selection criteria include the availability of data 
for planned analyses, the selection of models with a good 
overall performance, and the spread of the future climate 
change signal. While these guidelines and the initially rec-
ommended models in Sobolowski et al. (2023) have helped 
research groups across Europe in their model selection for 
various analyses, the evaluation of model performance is 
conducted holistically for a large variety of variables and 
the entirety of Europe. Therefore, it is not optimized for 
certain climate impact drivers and different geographical 
regions. This may play a role as some models may excel 
in certain regions, such as coastal areas, but may be sub-
optimal in others such as in mountainous terrains (Brands 
2022a; Di Virgilio et al. 2022). Furthermore, some models 
may be better suited for specific variables (Kotlarski et al. 
2014). McSweeney et al. (2015), for instance, has conducted 
a thorough analysis of surface temperature and precipita-
tion, evaluating models for large regions and examining the 
potential ranges in key variables.

Understanding the synoptic-scale patterns in climate 
models is essential, as is shown by the study of Vautard et al. 
(2023) on heatwaves. They show that, although the CMIP6 
models effectively capture how thermodynamics drive tem-
perature rising in Europe, the models often overlook the sig-
nificant role dynamic processes play in these temperature 
changes. Moreover, the authors suggest the model dynamics 
to be responsible for the underestimated trend in extreme 
temperatures for Western Europe. In other studies, an eval-
uation method of the synoptic-scale atmospheric dynam-
ics based on weather types is getting more attention and is 
being studied, e.g. by Otero et al. (2018), Brands (2022a) 
and Fernández-Granja et al. (2023). Regarding the weather 
types, a very common method is the Lamb Weather Type 
classification (LWT) which has already been used in differ-
ent works, to understand the influence of regional climate 
on specific variables. For instance, Brisson et al. (2011) 
demonstrated the impact of weather types on precipitation 
in coastal regions, characterizing certain weather types as 
“wet”. Another study by Tomczyk and Owczarek (2020) 
associated the occurrence of heat stress in Poland with the 
presence of high-pressure systems. Additionally, Hoogeveen 
and Hoogeveen (2023) developed a temperature-specific 
weather-typing classification to study the relation between 
the increasing temperatures and the origin of the airflow.

However, to the best of our knowledge, a method that 
uses climate impact driver-tailored weather typing for model 
selection has not been proposed so far. The demonstrated 
influence of weather types on both the region and variable 
of interest underscores the need for a methodology that inte-
grates both aspects. A comprehensive framework for the 
tailored selection of large simulation ensembles that relies 
on climate projections and is based on synoptic weather 
types could prove beneficial for a range of purposes, such 
as analyzing changes in synoptic patterns and downscaling 
relevant models.

This study proposes a selection methodology that estab-
lishes a link between synoptic weather types and variables 
of interest, enabling the evaluation of models based on pre-
established influences. Drawing inspiration from the guide-
lines proposed by Sobolowski et al. (2023) and the analysis 
of McSweeney et al. (2015), this study adapts and expands 
upon these principles to formulate a selection methodology. 
This approach facilitates the identification of both the most 
and least extreme model members as well as models with 
an average signal for a specific region and variable of inter-
est, thereby contributing to an informed decision-making 
process grounded in relevant climate projections.

2 � Materials and methods

2.1 � Overview of the selection methodology

To select the models that are best suited for a specific cli-
mate change signal or climate impact driver over a region of 
interest, we developed the methodology outlined in Fig. 1.

The methodology consists of three main steps, each 
described in the following sections. The previously defined 
climate change signal (e.ge. extreme heat) or climate impact 
driver can be described by one or more variables of interest 
(e.g. maximum temperature) that will be used in the differ-
ent steps of the methodology. In the first step (Sect. 2.1.1), 
the observational data are used to adjust the existing Lamb 
Weather Type classification to a variable- and region-spe-
cific classification. The second step (Sect. 2.1.2) consists of 
the evaluation of the atmospheric dynamics of the different 
GCMs and subsequently eliminates low-performing GCMs 
whose weather types poorly match the observational dataset. 
The practical considerations of this step revolve around the 
data availability given the variable and region of interest. 
The third step (Sect. 2.1.3) classifies the remaining models 
based on a set of indices related to the climate change signal 
for the variable of interest. These indices are dependent on 
the variable of interest. The data availability can again be an 
important practical consideration. This methodology results 
in an overview of the climate change signals among the dif-
ferent GCMs. This overview can be combined with practical 
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considerations for the final decision, e.g. the subset of GCMs 
for which the driving data is available for a specific Regional 
Climate Model (RCM).

2.1.1 � Region‑ and variable‑specific LWT classification

Following previous studies of e.g. Huth et al. (2008), Demu-
zere et al. (2009) and Brands (2022a), the evaluation of dif-
ferent GCMs is carried out by comparing the frequency of 
occurrence of Lamb Weather Types (LWT) of these models 
with those of a reference dataset over the historical period. 
One of the main advantages of this classification method is 
that the different LWTs can be linked to surface variables 
such as wind speed, rain, and temperature (Jones et al. 1993; 
Trigo and DaCamara 2000). While several studies (e.g. 
Jones et al. 1993; Trigo and DaCamara 2000; Brands et al. 
2014) have proven that some of these circulation patterns 
and certain weather phenomena are strongly related, these 
relations are dependent on the region as well  (Jones et al. 
1993; Trigo and DaCamara 2000; Brands et al. 2014). For 
example, Tomczyk and Owczarek (2020) found that persis-
tent and widespread high-pressure systems above Europe 
often block zonal circulations leading to periods with very 
strong heat stress. Brunner et al. (2017) have found similar 
results when connecting atmospheric blocking to tempera-
ture extremes in Europe. Additionally, both Trigo and DaCa-
mara (2000) and Brisson et al. (2011) have concluded that 
certain weather types resulted in significantly wetter days 
than others, for Portugal and Belgium respectively.

In the first step of our methodology, we therefore propose 
two adjustments of the existing LWT classification based on 

the optimization of the grouping of different weather types. 
The goal of the optimization is both to increase the inter-
group separation and to decrease the intra-group variability 
of the climate variable of interest. By doing so, this classifi-
cation is tailored to account for a specific signal of a variable 
for a specific region.

The original 27-type LWT classification is determined 
based on a 16-point grid of Mean Sea Level Pressure 
(MSLP) which is used to calculate the resultant flow (F) 
and the total shear vorticity (Z). The classification uses F 
and Z to classify each moment into one of 27 LWTs (Fig. 2): 
pure cyclonic (C) and anticyclonic (A) circulation, 8 pure 
directional types (N, NE, E,..., NW) and 16 hybrid types 
(combinations of either A or C with any of the directional 
types) and a 27th type (LF), the unclassified records due to 
days with low flows. Details on this classification can be 
found in Supp. A. Our suggested adjustments to the origi-
nal LWT classification are two-fold and result in a 13-type 
reduced LWT (rLWT) classification: 

1.	 Removal of the existing hybrid category: all hybrid 
weather types are merged with the pure directional 
types, which is in line with previous studies (e.g. Trigo 
and DaCamara 2000; Demuzere et al. 2009). The latter 
study showed that the frequencies of occurrence of the 
hybrid types are relatively small compared to the other 
weather types over their region of interest, and addition-
ally, that differences between the pure directional type 
and its related hybrid types are smaller than differences 
between directional types. Comparable outcomes were 
obtained in this study, as illustrated in Supp. B.

Fig. 1   Overview of the different 
steps of the selection methodol-
ogy. The boxes on the top row 
represent the requirements for 
each step. The boxes on the sec-
ond row indicate the different 
steps of the selection process, 
with the numbers indicating the 
respective steps. The bottom 
row relates to the outcomes of 
the associated step
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2.	 Introduction of the weak/strong vorticity separation: this 
step consists of the introduction of four new weather 
types. These are obtained by splitting the anticyclonic 
and cyclonic weather types into weak (w) and strong (s) 
weather types i.e. wA, sA and wC, sC, by optimizing a 
separation threshold for the total shear vorticity (Z).

We use the Calinski–Harabasz Index [CHI, Calinski 
and Harabasz (1974), also referred to as the Pseudo-F 
statistic (Beck and Philipp 2010)], as the object func-
tion to optimize the grouping of the weather types and 
the associated climate variable. The Constrained Opti-
mization BY Linear Approximations [COBYLA, Powell 
(1994)] method was used for optimization. The COBYLA 
method is a simplex-based, direct search method which 
employs a trust-region strategy. The method approximates 
the objective function by using linear models near the 
current point, while also respecting given constraints 
(Powell 1994).

The CHI for K number of weather types in dataset D 
of the variable of interest for N time instances = [ d1 , d2 , 
d3,..., dN ] is defined as:

where nk and ak are the number of time instances and the 
average for the variable of interest of the k-th weather type, 
respectively, a is the global average for the variable of inter-
est over all weather types and di the value of the variable 
of interest of data point i within weather type k. The CHI 
measures the variability within each weather type by com-
paring the variable of interest at different times when that 
weather type occurs to its average. It also assesses the sepa-
ration between clusters by comparing the average of each 
weather type to the global average. Higher CHI values indi-
cate that the weather types and related values for the vari-
able of interest are dense and separated. To determine the 
optimal separation threshold for the total shear vorticity, we 
iteratively change this threshold, reclassify the weather types 
and calculate the CHI. Generally, there are no clear cut-off 
values for the CHI; therefore, Calinski and Harabasz (1974) 
suggest that the value which gives a clear peak or an abrupt 
increase/decrease in the CHI plot should be chosen. These 
values were used as different initial guesses for COBYLA 
in order to avoid obtaining local maxima. This procedure is 
illustrated in supplementary Fig. 14.

2.1.2 � CMIP6 evaluation

The developed regional and variable-specific rLWT clas-
sification is used to evaluate the different CMIP6 models in 

(1)

CHI =

�

∑K

k=1
nk ∥ ak − a ∥2

K − 1

��
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k=1

∑nk
i=1

∥ di − ak ∥
2
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representing synoptic dynamics. We have calculated the model 
frequencies of each of the 13 rLWTs and compared them with 
the corresponding LWT frequencies derived from ERA5 for 
the reference period. The Perkins Skill Score [PSS, Perkins 
et al. (2007)] was used as a metric to evaluate the correspond-
ence between these frequency distributions, defined as:

with k the weather type, fM,k the frequency of weather type 
k in the model distribution and fO,k the frequency of weather 
type k in the reference distribution. A perfect match between 
both distributions would lead to a PSS of 1, whereas a com-
plete mismatch leads to a PSS of 0. Following an empirical 
statistical rule, all models with PSS values below the PSS 
average minus the PSS standard deviation are omitted from 
further analysis.

2.1.3 � Scoring based on climate change signal

The second and last step of this methodology concerns the 
selection of models based on their climate change signal for a 
future period of interest. This requires the definition of differ-
ent indices related to the climate change signal of interest, e.g. 
HUMIDEX in case of humid heat or return periods in case of 
extreme precipitation.

We capture the relationship between the weather types and 
the variable of interest in a newly developed index, by assign-
ing weights to certain percentiles for the variable of interest 
and investigating the change in weather types. As such we 
address whether the occurrence of several weather types, rel-
evant to the variable of interest, is projected to change. More 
specifically, we introduce a new index called the “Weather 
Type Change Index” (WTCI) to quantify the future change in 
the frequency of weather types relevant to the variable of inter-
est (var). The following formulas are used for the calculation:

where Δfk refers to the frequency change between the future 
and the historical period. The frequency of historical days 
( fhist ) with weather type k where the variable of interest 
stays below ( < 50 ) or exceeds ( ≥ 50 ) the x-th percentile 
is used as a weighting factor for each weather type ( �k ), 
which is normalized for all weather types, resulting in �k . 

(2)PSS =
∑

k

min(fM,k, fO,k),

(3)WTCI =

K
∑

k=1

Δfk ⋅ �k,

(4)�k =
�k

∑K

k=1
�k

,

(5)𝛼k =

{

fhist(var < x ∣ k) if x < 50

fhist(var ≥ x ∣ k) if x ≥ 50
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The differentiation at x = 50 is made to make the WTCI 
generally applicable, e.g. minimum versus maximum tem-
peratures. The percentile can be extreme (e.g. 1% or 99%) 
but could target the median of the distribution (50%) as well. 
Additionally, this is illustrated by the case study that will be 
discussed in Sect. 2.3.2.

Once all indices are determined, an overall score for 
all models can be calculated as follows: 

1.	 Determine the minimum and maximum value for each 
index over each future period.

2.	 Scale the indices using minimum–maximum scaling.
3.	 Average the scaled indices for each model. This gives 

the overall score for each model.

This strategy results in an overall ranking for the models 
included, given a climate change signal or climate impact 
driver. Upon using multiple indices, their dependence 
should be investigated as one may wish to account for 
the relation between indices. An example of such analysis 
would be to perform a principal component analysis.

2.2 � Data

2.2.1 � ERA5

The fifth generation atmospheric reanalysis (ERA5) of 
the global climate of the European Centre for Medium-
Range Weather Forecasts (ECMWF) covers the period 
from January 1940 to the present and is available at a 
resolution of about 0.25 ◦ (Hersbach et al. 2023).

For this study, we used the ERA5 data between 1985 
and 2014, following the end date of most CMIP6 histori-
cal runs as well as the guidelines of the World Meteoro-
logical Organization (2017) to use 30-year periods. Three 
variables were used: mean sea level pressure (MSLP), 
2  m temperature (T) and 2  m dewpoint temperature 
(Tdew). Additionally, following the recommendations 
of the ECMWF, daily minimum and maximum tempera-
tures (Tmin and Tmax, respectively) were obtained from 
the hourly 2 m temperature data (ECMWF 2020). Rela-
tive humidity (RH2m) was obtained by combining T and 
Tdew. The calculations for the RH2m are included in 
Supp. D. The ERA5 data was bilinearly interpolated to a 
common 1 ◦ × 1 ◦ grid, following e.g. Broderick and Fealy 
(2015) and Kim et al. (2020).

2.2.2 � CMIP6

An ensemble of CMIP6 models with one member per model 
is considered. A summary of the CMIP6 models can be 
found in Table 1. For each model, the historical and the 

Shared Socioeconomic Pathways (SSP, limited to SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were retained if 
all required variables were available at a daily frequency 
(“Retained” in Table 1). Following Brunner et al. (2020) 
and Brands (2022b), it is recommended to consider differ-
ent model families to incorporate the widest possible range 
of model components, hence the model families are also 
included in the table. A limited number of models that 
the IPCC used in the AR6 report (IPCC 2023), were not 
included in the whole analysis due to data unavailability 
(e.g. AWI-CM-1-1-MR and CIESM), or due to known errors 
in the most recently-published data [e.g. CESM2, CESM2-
WACCM, information obtained from ES-DOC (2016)]. The 
same variables as for ERA5 were extracted, excluding the 
dewpoint temperature but including the relative humidity, 
and we adopted the same abbreviations. The RH2m was pre-
ferred over the Tdew as this was available for more models. 
Similarly to ERA5, all data was bilinearly interpolated to a 
common 1 ◦ × 1 ◦ grid.

2.3 � Methodology applied to a case study: extreme 
heat in Belgium

This section uses the developed selection methodology to 
answer the question: “Which five CMIP6 models have the 
most extreme summer temperature signals under different 
GWLs for Belgium?”. Given that Belgium is a relatively 
small country, we considered the coordinate 50°N–5°E to be 
representative of Belgium. Note that this is a very specific 
research question to illustrate the application of the meth-
odology and that the framework is flexible to be used for 
different CMIP6 selection criteria.

We choose to define model periods based on different 
Global Warming Levels (GWLs). The method of using 
GWLs instead of transient scenarios has become a com-
mon practice in the scientific literature as well as in com-
munication with society and stakeholders (IPCC 2023). 
Several studies (e.g. Seneviratne et al. 2016; Tebaldi and 
Knutti 2018; Li et al. 2020a) have found that the climate 
change signal at different GWLs is almost entirely inde-
pendent of scenario and time horizon for most variables. 
Additionally, they stated that the signal at a GWL is nearly 
linearly related to regional climate effects. GWLs represent 
the change in the global mean surface temperature through-
out the fixed duration, which is usually a 20- or 30-year 
period (IPCC 2023; World Meteorological Organization 
2017), from a future period concerning a reference period 
(here 1985–2014) where the average global temperatures 
from 1850 until 1900 are used as a baseline. This baseline 
was obtained by averaging three datasets: NOAAGlobal-
Temp (Zhang et al. 2023), HadCRUT5 (Morice et al. 2021) 
and Berkely-Earth (Rohde and Hausfather 2020). In the 
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Table 1   Overview of the CMIP6 model runs used in this work

“Model family” follows the grouping made by Brands (2022b) and Brunner et al. (2020), with italics referring to GCMs that did not fulfil the 
grouping criteria. The models that were retained for the case study are indicated in the “Retained” and “SSP” columns

CMIP6 model Run Model family Retained SSP References

ACCESS-CM2 r1i1p1f1 HadGAM/UM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Bi et al. (2020)
ACCESS-ESM1-5 r1i1p1f1 HadGAM/UM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Ziehn et al. (2020)
BCC-CSM2-MR r2i1p1f1 CAM Wu et al. (2019)
BCC-ESM1 r1i1p1f1 CAM Wu et al. (2020)
CanESM5 r1i1p1f1 CanAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Swart et al. (2019)
CESM2 r4i1p1f1 CAM Danabasoglu et al. (2020)
CESM2-FV2 r1i1p1f1 CAM Danabasoglu et al. (2020)
CESM2-WACCM r1i1p1f1 CAM Danabasoglu et al. (2020)
CESM2-WACCM-FV2 r1i1p1f1 CAM Danabasoglu et al. (2020)
CMCC-CM2-HR4 r1i1p1f1 CAM Cherchi et al. (2019)
CMCC-CM2-SR5 r1i1p1f1 CAM Cherchi et al. (2019)
CMCC-ESM2 r1i1p1f1 CAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Lovato et al. (2022)
CNRM-CM6-1 r1i1p1f2 ARPEGE ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Voldoire et al. (2019)
CNRM-CM6-1-HR r1i1p1f2 ARPEGE ✓ SSP5-8.5 Voldoire et al. (2019)
CNRM-ESM2-1 r1i1p1f2 ARPEGE ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Séférian et al. (2019)
EC-Earth3 r1i1p1f1 IFS ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Döscher et al. (2022)
EC-Earth3-AerChem r1i1p1f1 IFS ✓ SSP3-7.0 Döscher et al. (2022)
EC-Earth3-CC r1i1p1f1 IFS ✓ SSP2-4.5, SSP5-8.5 Döscher et al. (2022)
EC-Earth3-Veg r1i1p1f1 IFS ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Döscher et al. (2022)
EC-Earth3-Veg-LR r1i1p1f1 IFS ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Döscher et al. (2022)
FGOALS-f3-L r1i1p1f1 GAMIL He et al. (2020)
FGOALS-g3 r1i1p1f1 GAMIL ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Li et al. (2020b)
GFDL-CM4 r1i1p1f1 GFDL-AM ✓ SSP2-4.5, SSP5-8.5 Held et al. (2019)
GFDL-ESM4 r1i1p1f1 GFDL-AM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Dunne et al. (2020)
GISS-E2-2-G r1i1p1f1 GISS-E2 Rind et al. (2020)
HadGEM3-GC31-LL r1i1p1f3 HadGAM/UM ✓ SSP1-2.6, SSP2-4.5, s SSP5-8.5 Roberts et al. (2019)
HadGEM3-GC31-MM r1i1p1f3 HadGAM/UM ✓ SSP1-2.6, SSP5-8.5 Roberts et al. (2019)
IITM-ESM r1i1p1f1 GFS ✓ SSP1-2.6 Swapna et al. (2015)
INM-CM4-8 r1i1p1f1 INM-AM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Volodin et al. (2018)
INM-CM5-0 r1i1p1f1 INM-AM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Volodin et al. (2017)
IPSL-CM5A2-INCA r1i1p1f1 LMDZ Dufresne et al. (2013)
IPSL-CM6A-LR r1i1p1f1 LMDZ ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Boucher et al. (2020)
IPSL-CM6A-LR-INCA r1i1p1f1 LMDZ Dufresne et al. (2013)
KACE-1-0-G r2i1p1f1 HadGAM/UM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0 Lee et al. (2020a)
KIOST-ESM r1i1p1f1 GFDL-AM ✓ SSP2-4.5, SSP5-8.5 Pak et al. (2021)
MIROC6 r1i1p1f1 MIROC-AGCM/CCSR ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Tatebe et al. (2019)
MIROC-ES2L r1i1p1f2 MIROC-AGCM/CCSR ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Hajima et al. (2020)
MPI-ESM1-2-HR r1i1p1f1 ECHAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Mauritsen et al. (2019)
MPI-ESM1-2-LR r1i1p1f1 ECHAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Mauritsen et al. (2019)
MPI-ESM-1-2-HAM r1i1p1f1 ECHAM ✓ SSP3-7.0 Müller et al. (2018)
MRI-ESM2-0 r1i1p1f1 GSMUV/MRI-AGCM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Yukimoto et al. (2019)
NESM3 r1i1p1f1 ECHAM Cao et al. (2018)
NorCPM1 r1i1p1f1 CAM Bethke et al. (2021)
NorESM2-LM r1i1p1f1 CAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Seland et al. (2020)
NorESM2-MM r1i1p1f1 CAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0 Seland et al. (2020)
SAM0-UNICON r1i1p1f1 CAM Park et al. (2019)
TaiESM1 r1i1p1f1 CAM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Lee et al. (2020b)
UKESM1-0-LL r1i1p1f2 HadGAM/UM ✓ SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Sellar et al. (2019)
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following sections, the “(model) period” refers to a future 
30-year period around a GWL.

In this work, similar to Sanderson et al. (2011), four dif-
ferent GWLs have been chosen to define model periods: 
1.5 ◦ C, 2 ◦ C, 3 ◦ C and 4 ◦ C. The method of Vautard et al. 
(2014) was followed to determine the periods when the dif-
ferent models reached these GWLs.

To equalize the comparison between the different GCMs, 
all CMIP6 temperature variables and RH2m were bias-
corrected. The equidistant cumulative distribution function 
matching technique was used, a quantile-mapping approach 
that explicitly accounts for distribution changes between the 
projection and historical periods (Li et al. 2010).

2.3.1 � Applied temperature‑dependent classification

The first step of the selection methodology (as explained in 
Sect. 2.1.1) consists of the adjustment of the LWT classifi-
cation. For this, we used the daily Tmax of ERA5. The CHI 
reached an optimum (109.81) for a total shear vorticity of 18 
(17.78) hPa, corresponding to an optimal separation between 
weak and strong (anti)cyclones as described in Sect. 2.1.3. 
An overview of the new, temperature-dependent 13-type 
classification is given in Fig. 2.

In Fig. 2, it can be seen that the pure directional category 
has been extended compared to the original classification. 
Additionally, the separation between weak and strong (anti-)
cyclones becomes visible.

2.3.2 � Indices for ranking

As mentioned in the methodology, the ranking that will 
result in the model periods with the highest increase in 
extreme heat is based on different indices. The selection 
methodology here is based on three different indices: one 
related to the weather types, as suggested, and two related to 
heat. As such, we attempt to capture different characteristics 
influencing the extreme heat climate change signal. We used 
two different heat stress indices: the Heat Wave Degree Days 
(HWDD), which relates to the length and intensity of heat-
waves, and the humidity index (HUMIDEX), which relates 
to thermal comfort. The three indices address heat on dif-
ferent temporal scales: the HUMIDEX is calculated daily, 
the WTCI is calculated with daily data but aggregated over 
the total period, while the HWDD only considers heat waves 
and is therefore linearly related to the amount of heat. For 
both heat indices, the change in P95 between the histori-
cal period and the future period was calculated and used in 
this study. Details in the HWDD and the HUMIDEX can be 
found in Supp. E.

Figure 3 shows how the different rLWTs relate to the 
daily maximum temperature. Continental air masses (E, 
SE and S) generally result in warmer days, while oce-
anic air masses (W, SW) result in colder temperatures. 
These findings result in the third index for the ranking: the 
WTCI, as introduced in Eq. (5). Here, we use Tmax for var 
(variable of interest) and x equals 90, reflecting our focus 
on extreme heat. Positive values indicate an increase in 
weather types related to extreme temperatures. As weather 

Fig. 2   Graphic overview of the Lamb Weather Type classification 
based on the total shear vorticity (Z, x-axis) and the resultant flow 
(F, y-axis). Both flow and vorticity units are geostrophic and are 
expressed in hPa per 10 ◦ latitude. The left graph refers to the original 
LWT classification, as introduced by Jenkinson and Collison (1977). 
The right graph represents the adjusted classification for extreme heat 

in Belgium. “LF” stands for the Low Flow/Unclassified weather type. 
“N, NE,..., NW” represent the different wind directions. “A” and “C” 
stand for the (Anti)cyclonic weather types, while the hybrid weather 
types are a combination of either wind direction with either (anti)
cyclonic weather type. Prefixes “w” and “s” stand for “weak” and 
“strong”, respectively
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types are also related to wind direction and humidity, this 
index indirectly accounts for changes in atmospheric 
conditions.

3 � Results

3.1 � CMIP6 evaluation

We assess the evaluation of the atmospheric dynamics of 
the different CMIP6 models. Figure 4 shows rLWT summer 
(JJA) frequencies where the panels per model are sorted by 
decreasing PSS (Eq. 2). Four out of 32 models fall below the 
performance threshold of 0.815, which was defined as the 

Fig. 3   Relation between the 
weather types of the reduced 
Lamb Weather Type classifi-
cation and the corresponding 
maximum temperatures for JJA 
over the period 1985–2014. 
The weather types on the x-axis 
are ordered on decreasing 
frequency of each weather type 
above the 90th temperature 
percentile

Fig. 4   Barplots representing the frequency of the different reduced 
Lamb Weather Types (rLWT) for different CMIP6 models in JJA. 
The Perkins Skill Score (top number) as well as its rank compared 

to the other models (bottom number) is shown. Red values indicate a 
PSS performance worse than � − � (here: 0.815). The colours of the 
model names refer to the different model families as given in Table 1
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average PSS minus the standard deviation of the PSS of the 
included GCMs. These models are deemed to represent the 
large-scale atmospheric circulations inferior to other mod-
els and are consequently excluded from further analysis. In 
general, lower PSS values can be observed when a model 
strongly over-/underestimates the frequency of a weather 
type that occurs either very often (e.g. sA for MIROC-ES2L) 
or very little (e.g. E for INM-CM4-8).

The worst-performing models (in red in Fig. 4) have clear 
differences in the frequencies of the different rLWTs com-
pared to ERA5. Both INM-CM4-8 and INM-CM5-0 overes-
timate the Northeasterly (NE) and Easterly (E) weather types 
while underestimating the Southwesterly (SW) and Westerly 
(W) weather types. MIROC-ES2L strongly overestimates 
the Low Flow (LF) and weak Anticyclonic (wA) weather 
types, while underestimating the strong Anticyclonic (sA) 
weather type. This might be partially explained by the model 
underestimating the vorticity, as this leads to more wA and 
less sA. And lastly, NorESM2-LM mainly overestimates sA 
and W and underestimates the LF and Northerly (N) weather 
types. In general, two model families are less capable of 
representing the atmospheric dynamics: INM-AM (average 
PSS: 0.727) and MIROC (average PSS: 0.804).

The 10 best models predominantly originate from two model 
families (Table 1): the HadGAM/UM (HadGEM3-GC31-LL, 
HADGEM3-GC31-MM and ACCESS-CM2), and all models 
from the EC-Earth Consortium. The rLWT frequencies of each 
of these eight models have a high correspondence (lowest PSS 
= 0.913) with those of ERA5, indicating that the models rep-
resent the atmospheric dynamics very well during the JJA of 
the reference period.

3.2 � Model selection based on the change 
of the climate change signal

After the evaluation and subsequent elimination of the 
CMIP6 models, we now rank models for Belgium based on 
three indices that are related to extreme heat. The results 
for these indices for the different GWL periods are shown 
in Fig. 5.

For the selected indices there is a big spread among the 
different models and the GWLs. Additionally, this spread 
increases with increasing GWL, indicating that a warmer 
world will on average lead to more heat stress but also to 
more uncertainty on the heat-stress signal. Overall, the 
median WTCI increases only slightly with increasing GWL. 

Fig. 5   Graphical overview of the positioning of the different CMIP6 
models for three different indices (x-axis, y-axis and colorbar) and 
four GWLs (different subplots). Red squares indicate the top five 
models in the final overview, purple squares indicate the bottom five 

models. The number of models that reach a certain GWL is indicated 
in the top left corner of each plot. The dashed lines represent the P5, 
P50 and P95 of the WTCI and Δ P95 HUMIDEX for each GWL
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Additionally, the P95 increases with GWL whereas the P5 
remains similar over all GWLs. Lastly, both the P95 and P5 
strongly change between 3 ◦ C and 4 ◦ C, with a larger range 
for 4 ◦ C. In contrast, the change in the HUMIDEX consist-
ently increases with GWL, similar to the change in HWDD. 
In general, it can be observed that both the HWDD and 
HUMIDEX are more sensitive to thermodynamic changes 
than to dynamic changes, which are encapsulated in the 
WTCI. These findings are in line with the results of Otero 
et al. (2018) who stated that changes in dynamics have a 
smaller influence on variations in European temperatures 
compared to changes in thermodynamics. Therefore, the 
WTCI seems to be rather less sensitive to the GWL com-
pared to the HUMIDEX and the HWDD.

The presented methodology results in a ranking of the 
models for each GWL and for different SSPs by combin-
ing the scaled indices. As the correlation between the three 
chosen indices was overall relatively low in our study (0.82, 
0.41 and 0.30), we did not include any weighting of ranks.

The five models with the highest (red squares in Fig. 5) 
and the lowest scores (purple squares) in the ranking for 
extreme heat are mostly situated in the first quadrant and 
third quadrant respectively. Quadrants are here based on the 
median values for the WTCI and the change in the 95th per-
centile of the HUMIDEX. This visually demonstrates the 
efficacy of the developed selection methodology. Models 
that have a high (low) overall score also have a high (low) 
score for the different indices. Lastly, the answer to our 
case-study-specific question, the five models with the high-
est score and thus the overall most extreme heat signal for 
Belgium are given in Table 2.

4 � Discussion

4.1 � CMIP6 evaluation

The model evaluation is predicated on the assumption of 
Sobolowski et al. (2023), stating that “realistic models will 
produce more realistic future projections, because they can 

represent processes correctly”. Following this, we aimed to 
develop a methodology that could limit the risk of selecting 
models with errors in their synoptic-scale model dynamics. By 
introducing the performance threshold in the CMIP6 evalua-
tion, we excluded models that are less capable of representing 
the atmospheric dynamics of the region of interest. However, 
as stated by Knutti et al. (2010), the question of whether a 
model is good or bad often depends on the intended applica-
tion. As a consequence, we developed the variable-specific 
LWT classification and applied this for heat in Belgium. By 
doing so, we ensured that the model evaluation was based on 
heat-related weather types. As errors in atmospheric dynamics 
are often inherited in RCMs after downscaling, our developed 
methodology can for example be used to limit this transfer of 
errors in a physically consistent way.

One example of the application potential of the selection 
methodology is downscaling GCMs with specific climate 
change signals, and more specifically, the propagation of 
the climate change signal when downscaling (Liang et al. 
2008). By introducing weather types, that act on the synoptic 
scale, we aimed at developing a method that would limit the 
risks of an unwanted propagation, e.g. the RCM has a strong 
cooling signal while the GCM has a strong warming signal.

The general evaluation of the CMIP6 models as previ-
ously discussed is in line with the results of Brands (2022a) 
for the northern hemisphere and the ones of the CORDEX 
white paper [(‘Bra21LambEUR’ in the summary table, 
Sobolowski et al. (2023)], where the MAE was used as an 
evaluation criterion. We found that our correlation between 
PSS and MAE was equal to − 1, indicating that when applied 
to the same categorical data, the PSS and MAE are opposites 
of each other. The Spearman correlation between our PSS 
and the MAE of the results of (Brands 2022a) for the north-
ern hemisphere is − 0.88 for models included in both stud-
ies and − 0.87 when compared with Europe [(Bra21Lam-
bEUR, Sobolowski et al. (2023)]. The negative sign of the 
correlation indicates that models that adequately represent 
the atmospheric dynamics feature high PSS values and low 
MAE values. The correlation is remarkably high despite the 
differences in the reference period (1979–2005 versus JJA of 

Table 2   Models with the 
highest score for the most 
extreme change in heat 
signal over Belgium, with the 
reference period of 1985-2014

1.5 ◦C 2 ◦C 3 ◦C 4 ◦C

ACCESS-ESM1-5
SSP5-8.5 (0.812)

MRI-ESM2-0
SSP5-8.5 (0.808)

CanESM5
SSP3-7.0 (0.803)

IPSL-CM6A-LR
SSP5-8.5 (0.825)

MRI-ESM2-0
SSP5-8.5 (0.812)

ACCESS-ESM1-5
SSP5-8.5 (0.782)

ACCESS-ESM1-5
SSP5-8.5 (0.756)

CanESM5
SSP3-7.0 (0.817)

MRI-ESM2-0
SSP3-7.0 (0.751)

TaiESM1
SSP5-8.5 (0.755)

MRI-ESM2-0
SSP5-8.5 (0.731)

EC-Earth3-Veg
SSP5-8.5 (0.799)

TaiESM1
SSP3-7.0 (0.716)

MRI-ESM2-0
SSP5-8.5 (0.707)

KIOST-ESM
SSP5-8.5 (0.726)

EC-Earth3
SSP5-8.5 (0.796)

EC-Earth3-Veg
SSP2-4.5 (0.636)

NorESM2-MM
SSP2-4.5 (0.660)

EC-Earth3-Veg
SSP5-8.5 (0.717)

TaiESM1
SSP5-8.5 (0.771)
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1985–2014) and reference data (ERA-Interim and JRA-55 
versus ERA5). Additionally, the MAE as given by Brands 
(2022a) is the median value of all calculations over the mid-
to-high latitudes in the Northern Hemisphere, while the val-
ues of this study are limited to the calculations representa-
tive of Belgium only. Similar to their findings, the models 
of the Earth Consortium all had a high PSS. The affinity of 
these models to ERA5 has previously been partly related to 
the fact that they both are based on the ECMWF IFS and 
thus share similar model components (Hersbach et al. 2020; 
Döscher et al. 2022; Brands 2022b). ? also found that a high 
correlation is present between the northern and southern 
hemisphere. Given the similarity between these results, it 
indicates that the Lamb Weather Type approach for GCM 
evaluation is consistent over different regions.

In general, we can conclude that the overall assessment 
as mentioned in the CORDEX white paper (Sobolowski 
et al. 2023) provides a comprehensive overview of the per-
formance of CMIP6 models over Europe. Our framework 
can be used complementary, as it offers intricate details for 
specific regions and periods which could contribute to the 
selection process.

4.2 � Selection methodology

Our selection methodology consists of three steps. In each 
included step, we aimed to develop a method that consid-
ers the uncertainties in the large-scale atmospheric dynam-
ics and accounts for the climate change signal of interest. 
Admittedly, we recognize the sensitivity of our developed 
methodology to the number of included models and the 
length of the considered periods. Both are discussed below.

To start, our evaluation is limited to 32 models as the 
remaining CMIP6 models lacked the data required for the 
further steps of this study. A more extensive analysis, includ-
ing 48 CMIP6 models, can be found in Supp. F. Executing 
the evaluation with other models inherently leads to a dif-
ferent performance threshold for PSS, in this case 0.807. 
However, the same models were excluded, which seems to 
indicate that the method is robust and rather independent of 
the number of included models.

Furthermore, to investigate the sensitivity of the method 
to the length of the model periods, we applied our selec-
tion methodology to 20-year periods (reference period: 
1995–2014), instead of the 30-year periods used so far. Here, 
the same threshold of 18 hPa was found for the optimal sepa-
ration of weak and strong (anti-)cyclonic weather types. This 
might indicate that such separation could be applied in simi-
lar research where the maximum temperatures and related 
weather types in summer are studied.

Figure 6 shows that the PSSs of the 20-year periods 
(y-axis) are similar to those obtained using the 30-year peri-
ods (x-axis) and have a correlation of 0.979. This shows that 

the evaluation with the PSS is rather robust. This robustness 
can be partially related to the fact that the PSS results in one 
value for each model and will have relatively similar results 
over different periods.

Figure 7 depicts the differences in scoring for each GWL. 
It becomes clear that there is a rather large impact of the 
period length on the final scoring based on the three indices 
for the climate change signals, despite moderate to high cor-
relations between both period lengths.

As can be seen, the scoring varies most for models at the 
centre of each graph ([0.40, 0.60] in Fig. 7). This larger vari-
ation can be related to the values of the indices; the indices 
of the models in the middle will be more similar compared 
to the most and the least extreme models. As a consequence, 
minor differences between both periods can lead to a sub-
stantial change in score for the models in the middle. The 
top and bottom scores, on the other hand, have changed less, 
suggesting that the length of the periods has a relatively 
small effect on the most extreme models. Therefore, our 
selection methodology can be considered most suitable for 
selecting the models with the highest and the lowest change 
in their climate signal.

Our case study was intended to find five CMIP6 models 
that have the highest extreme heat signal. Table 3 shows the 
findings with the reference period of 1995-2014 and period 
lengths of 20 years. Some models and SSPs are the same 
as in Table 2, but there are differences. When comparing 
values in both tables, it becomes clear that the scoring is 
very sensitive to the considered periods as the scores of the 
same models also differ. This emphasizes that our selection 
methodology has succeeded in selecting case-study-specific 
models of interest.

Fig. 6   PSS for a 30-year reference period (1985–2014) compared to 
the PSS for a 20-year reference period (1995–2014). The correlation 
is indicated in the top left corner
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In addition to the sensitivity of the method for the period 
length, we also investigated its sensitivity to the consistency 
of models used. More specifically, we performed the same 
analysis but only using those models for which all warming 
levels were available, i.e. those that reach a 4 ◦ C warming 

(within the 21st century), instead of all models available. 
Figure 8 and Table 4 are similar to Fig. 5 and Table 2, but 
only include the models that reach all GWLs. Additionally, 
Fig. 9 shows the P5, P50 and P95 for the initial analysis as 

Fig. 7   Scores of the CMIP6 models obtained using 30-year periods (reference period: 1985–2014) against their scores obtained using 20-year 
periods (reference period: 1995–2014) for GWL 1.5 ◦ C, 2 ◦ C, 3 ◦ C and 4 ◦ C. The correlations are indicated in the top left corner

Table 3   Same as Table 2, but 
with the reference period of 
1995-2014

1.5 ◦C 2 ◦C 3 ◦C 4 ◦C

MRI-ESM2-0
SSP5-8.5 (0.841)

MRI-ESM2-0
SSP5-8.5 (0.820)

EC-Earth3-Veg
SSP5-8.5 (0.842)

IPSL-CM6A-LR
SSP5-8.5 (0.820)

MRI-ESM2-0
SSP3-7.0 (0.837)

MRI-ESM2-0
SSP3-7.0 (0.781)

IPSL-CM6A-LR
SSP5-8.5 (0.791)

UKESM1-0-LL 
SSP5-8.5 (0.734)

MRI-ESM2-0
SSP1-2.6 (0.730)

ACCESS-ESM1-5
SSP5-8.5 (0.753)

ACCESS-ESM1-5
SSP5-8.5 (0.744)

MRI-ESM2-0
SSP5-8.5 (0.712)

UKESM1-0-LL
SSP2-4.5 (0.707)

EC-Earth3
SSP1-2.6 (0.725)

CanESM5
SSP3-7.0 (0.737)

ACCESS-ESM1-5
SSP3-7.0 (0.701)

GFDL-ESM4
SSP1-2.6 (0.702

CNRM-CM6-1
SSP1-2.6 (0.699)

MRI-ESM2-0
SSP5-8.5 (0.723)

CanEMS5
SSP3-7.0 (0.694)
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given in Fig. 5 and for the analysis with 27 models from 
Fig. 8.

In general, it can be observed in both Fig.  8 and 
Table 4 that the results are similar for the most extreme 
models. This indicates that our methodology can select 
the most extreme models and that adding more models 
has a limited effect on the final ranking. As some of the 
top five models in Table 2 do not reach 4 ◦ C of warming, 
they are not included in Table 4. Removing these models 
affected the minimum–maximum scaling as well, leading 
to different final scores. Figure 8 shows the influence on 
the spread as compared to Fig. 5. Overall, the median, 
P5 and P95 remain similar for the HUMIDEX and the 

HWDD, which can also be observed in Fig. 9. Addition-
ally, the median for the WTCI remains similar as well, 
while the P5 and P95 differ more. This can be explained 
by the fact that, as pointed out in Sect. 3.2, the WTCI is 
rather insensitive to the GWL. This means that removing 
the less climate-sensitive models has a non-related effect 
on the WTCI signal.

To finalize, we recognize the limitations of our 
methodology. A limitation of the use of the LWT clas-
sification for the evaluation lies in its consideration of 
a substantial geographical expanse for the calculations, 
while only yielding a singular output. As such, some 
information is inherently lost. Additionally, the use of 

Fig. 8   Same as Fig. 5, but only the 27 models that reach 4 ◦ C are included

Table 4   Same as Table 4, but 
only the 27 models that reach 
4 ◦ C are included

1.5 ◦C 2 ◦C 3 ◦C 4 ◦C

ACCESS-ESM1-5
SSP5-8.5 (0.822)

MRI-ESM2-0
SSP5-8.5 (0.795)

CanESM5
SSP3-7.0 (0.797)

IPSL-CM6A-LR
SSP5-8.5 (0.825)

MRI-ESM2-0
SSP5-8.5 (0.821)

ACCESS-ESM1-5
SSP5-8.5 (0.782)

ACCESS-ESM1-5
SSP5-8.5 (0.756)

CanESM5
SSP3-7.0 (0.817)

TaiESM1
SSP3-7.0 (0.719)

TaiESM1
SSP5-8.5 (0.754)

EC-Earth3-Veg
SSP5-8.5 (0.713)

EC-Earth3-Veg
SSP5-8.5 (0.799)

CNRM-CM6-1
SSP5-8.5 (0.612)

EC-Earth3
SSP5-8.5 (0.644)

MRI-ESM2-0
SSP5-8.5 (0.706)

EC-Earth3
SSP5-8.5 (0.796)

CNRM-ESM2-1
SSP5-8.5 (0.606)

TaiESM1
SSP3-7.0 (0.606)

EC-Earth3
SSP5-8.5 (0.695)

TaiESM1
SSP5-8.5 (0.771)
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the LWT classification is limited to mid-to-high latitude 
regions (Jones et al. 2013). However, a recent study by 
Fernández-Granja et al. (2023) stated that it can be reli-
ably applied over most areas within the 23.5 ◦ to 80 ◦ lati-
tudinal range. And lastly, we did not apply the readjust-
ment or selection methodology to larger and more diverse 
geographical regions, or other variables of interest, such 
as precipitation. Thus, a thorough review becomes neces-
sary before applying the methodology to other cases. As a 
consequence, we cannot ensure that performing the read-
justment on other variables would give a similarly strong 
differentiation for the different weather types. For exam-
ple, Brisson et al. (2011) showed both the regional and 
seasonal differences in correlation between geostrophic 
winds, which they related to LWTs and precipitation. 
However, the adjustments are optional changes and can 
be left out in case of more complex variables of interest, 
such as snow events.

5 � Conclusion

This study presents a novel methodology to select climate 
models for a specific region and variable of interest. The 
first step includes the adjustment of the existing LWT clas-
sification to make it both variable and region-specific and 
thus, application-specific. The adjusted classification is 

consequently included in the second step, the evaluation of 
the atmospheric dynamics through synoptic-scale weather 
patterns. This ensures that the selection procedure limits 
the risk of inheriting the major errors in the synoptic-scale 
model dynamics. The second step of the methodology 
encompasses a specific analysis of different indices that 
quantify the climate change signal for the climate impact 
driver of interest. We developed a new index, the WTCI, 
that quantifies the contribution of a change in weather types 
to the change in the variable of interest, which could be 
a specific percentile of temperature, precipitation, or wind 
...between two time periods. The WTCI can be used together 
with other indices for a given climate impact driver, like heat 
stress indices. The GCMs are scored with different indices, 
which results in an assessment of the suitability of the mod-
els for the required application.

We applied the developed methodology for the case study 
of extreme heat over Belgium on the CMIP6 ensemble using 
different GWLs. We excluded four low-performing mod-
els after model evaluation. As our case study focused on 
extreme heat, we tailored the WTCI and included a index 
that targets heat comfort (HUMIDEX) and one that targets 
heatwaves (HWDD). The WTCI was found to give com-
plementary information to these existing heat indices. The 
CMIP6 evaluation was quite robust concerning changes in 
the length of the climatological period (20 or 30 years), 
while the scoring is more sensitive.

Fig. 9   Comparison between P5 (blue), P50 (red) and P95 (yellow) for all available models (solid line) and the 27 models that reach 4 ◦ C (dashed 
line)
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We highlight the potential of this method as a general 
framework for tailored model selection. Our developed 
selection methodology can contribute to informed decisions 
when selecting CMIP6 models for different purposes, such 
as the detailed analysis of climate signals and downscaling 
of extreme weather events. The framework can be used for 
selecting model periods to downscale with RCMs. Addition-
ally, the adjusted variable dependent classification can serve 
as a starting point to analyze the relation between circulation 
patterns and other climatological variables.

Appendix 1: Lamb Weather Type 
classification

The Lamb Weather Type classification was developed by 
Lamb (1950, 1972) as a large-scale circulation classifica-
tion based on maps of mean sea level pressure (MSLP) for 
the regional weather over the British Isles. Jenkinson and 
Collison (1977) translated this empirical classification into 
an objective classification, known as both the LWT classi-
fication and the “Jenksinson–Collison Weather Type” clas-
sification. The LWT classification uses the daily Mean Sea 
Level Pressure MSLP (in hPa) at a 16-point grid (Fig. 10) 
over a spatial extent of 30◦ longitudes by 20◦ latitudes to 
classify the synoptic pattern at its centre point, located at 
latitude � . Each of the 16 points is spaced 5 ◦ in latitude 
( Δlat) and 10 ◦ in longitude toward the adjacent points. 
Both the flow units as well as the units for the geostrophic 
vorticity are expressed in hPa.

The following rules are used to define the LWTs, based 
on the formulas shown in Table 5: 

1.	 The direction of the flow (in degrees) is given by 
tan−1(W∕S) + � , where � = 180 ◦ if W is positive and 
� = 0 otherwise. The corresponding wind direction is 
computed using an eight-direction compass, allowing 
45 ◦ per sector. For example: the Northeastern weather 
type occurs for wind direction between 22.5 ◦ and 67.5 ◦.

2.	 If |Z| > 2F, then the pattern is strongly cyclonic (Z > 
0) or anticyclonic (Z < 0), corresponding to the pure 
cyclonic and anticyclonic types.

3.	 If |Z| is between F and 2F, the flow is considered to be 
of a hybrid type and is characterized by both direction 
and circulation, leading to sixteen different types.

4.	 If |Z| < F, the flow is considered straight and corresponds 
to a Lamb pure directional type. Eight different types 
exist: N, NE, E, SE, S, SW, W and NW.

5.	 If both |Z| and F are smaller than the LF-threshold of 6 
hPa, as defined by Jenkinson and Collison (1977), the 

Fig. 10   The 16-point grid as used in the Lamb Weather Type clas-
sification. The grid is centred over the orange point within Belgium

Table 5   Equations for the different parameters required for the Lamb Weather Type classification, for the Northern Hemisphere

The p’s represent the values of the MSLP (in hPa) as given in Fig. 10, the � is the latitude of the central point and Δlat is the lateral distance 
among the points

Parameter Symbol Equations

Westerly Flow W =
[

(p12 + p13) − (p4 + p5)
]

∕2

Southerly Flow S = �
[(

p5 + 2p9 + p13
)

−
(

p4 + 2p8 + p12
)]

∕4

Resultant Flow F = (S2 +W2)1∕2

Westerly Shear Vorticity WZ = �
[((

p15 + p16
)

−
(

p8 + p9
))

− �
((

p8 + p9
)

−
(

p1 + p2
))]

∕2

Southerly Shear Vorticity SZ =
�

4

[(

p
6
+ 2p

10
+ p

14

)

−
(

p
5
+ 2p

9
+ p

13

)

−
(

p
4
+ 2p

8
+ p

12

)

+
(

p
3
+ 2p

7
+ p

11

)]

Total Shear Vorticity Z = WZ + SZ

Where � = cos−1(�), � = sin(�) sin−1(� − Δlat), � = sin(�) sin−1(� + Δlat) and � = cos−2(�)
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flow is indeterminate, corresponding to the Low Flow 
type (also called the “Unclassified type”). This corre-
sponds to the so-called “barometric swamps” (Grimalt 
et al. 2013).

Appendix 2: Overview of directional 
and hybrid resemblance

The figures below show all weather types associated with 
the western flow, as determined for ERA5. The relative 
frequency of each weather type over the period 1985–2014 
is given in Table 6 (Figs. 11, 12, 13).

Appendix 3: Weak‑strong optimization 
with CHI

Figure 14 below showcases the initial step of the optimi-
zation. Here, the CHI was calculated for all Z thresholds 
between 0 hPa and 60 hPa, in order to obtain guesses for 
the optimization. The CHI-values between 0 and 6 and 
between 39 and 60 are not relevant for the analysis, as the 
targeted 13 weather types are not present here.

Appendix 4: ERA5: calculation of relative 
humidity at the surface level

ERA5 lacks direct relative humidity data at the 2-meter level. 
Therefore, we derived this information by calculating it from 
the corresponding temperature and dew-point temperature 

Fig. 11   Averaged MSLP patterns for the W-weather type over the 
period 1985–2014

Fig. 12   Averaged MSLP patterns for the AW-weather type over the 
period 1985–2014

Fig. 13   Averaged MSLP patterns for the CW-weather type over the 
period 1985–2014
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at 2 ms. The calculations follow the steps as described in 
ECMWF (2016):

where x can be both the air temperature and the dewpoint 
temperature at 2 ms, T0 equals 273.16K and eS0 represent the 
saturated vapour at T0 and equals 611.21 Pa. and � represents 
the mixed phase ratio and is calculated as follows:

(6)esat,x,w = eS0 ⋅ exp

(

17.502

(

x − T0

x − 32.19

))

(7)esat,x,i = eS0 ⋅ exp

(

22.587

(

x − T0

x + 0.7

))

(8)esat,x = �esat,x,w + (1 − �)esat,x,i

Appendix 5: Heat indices

HWDD

The HWDD is a yearly heat-stress indicator specifically 
developed for Belgium (Brouwers et al. 2015; Wouters et al. 
2017) and quantifies the accumulated temperature exceed-
ance during heat-wave days:

with TmaxP90,hist and TminP90,hist referring to the 90th per-
centile of Tmax ( ◦ C) and Tmin ( ◦C), respectively, of the 
JJA data over the historical period of 1985–2014. The sum-
mation i is over N days and hi indicates (0 or 1) whether 
the day i is a heat-wave day i.e. when the 3-day average 
of the minimum and maximum temperature exceeds their 
respective thresholds and thus incorporating the temporal 
persistence of the heat wave. The superscript + refers to the 
positive difference between the considered maximum/mini-
mum temperature and the respective threshold and equals 
zero if the difference is negative. By including the minimum 
temperatures, HWDD also takes into account high noctur-
nal temperatures which can limit the ability of the body to 
recover during heatwave periods and which has been related 
to increased mortality among elderly people (Basu 2002; 
Laaidi et al. 2012).

HUMIDEX

The HUMIDEX is calculated based on Basara et al. (2010), 
who adapted the original formula from Masterton and Rich-
ardson (1979):

where e refers to the partial vapour pressure (hPa). By incor-
porating both temperature and humidity, the HUMIDEX 
includes two of the most important variables for addressing 
thermal (dis)comfort (Epstein and Moran 2006; Fischer et al. 
2012). However, we also acknowledge that other indices can 
be used to describe heat (dis)comfort and that other variables 
impact heat (dis)comfort, e.g. radiation (Van De Walle et al. 
2022).

(13)

HWDD =

N
∑

i

[

(

Tmin − TminP90,hist
)+

+
(

Tmax − TmaxP90,hist
)+
]

hi,

(14)HUMIDEX = T +
5

9
(e − 10), where e = 6.112 ⋅ 107.5⋅T∕(237.7+T) ⋅

RH

100
,

Table 6   Relative frequency (%) of the directional and hybrid weather 
types over the summer periods of 1985–2014

The LF (10.94%), anticyclonic (23.12%) and cyclonic (6.92%) 
weather type are excluded from the table

Direction Pure Hybrid cyclonic Hybrid 
anticy-
clonic

N 6.37 4.78 0.80
NE 5.91 3.33 1.16
E 3.95 1.85 0.43
SE 1.78 0.51 0.80
S 1.67 0.58 0.62
SW 4.71 1.27 0.94
W 5.25 2.40 1.12
NW 5.80 2.40 0.62

with

where Tice equals 250.16K.
The relative humidity (%) is:

(9)𝛼 = 0 T <= Tice

(10)𝛼 =
T − Tice

T0 − Tice

2

Tice < T < T0

(11)𝛼 = 1 T >= Tice

(12)RH = 100 ⋅
esat,Tdew

esat,T
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Fig. 14   CHI as a function of 
total shear vorticity values 
ranging from 0 to 60 hPa (top 
panel). Corresponding CHI step 
changes are shown in the bot-
tom panel

Fig. 15   Extensive overview representing the frequency of the differ-
ent Lamb Weather Types (LWT) for different CMIP6 models. The 
Perkins Skill Score as well as its rank compared to the other models 

is shown. Red values indicate a performance worse than � − � . The 
colours of the model names refer to the different model families as 
given in Table 1
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Table 7   Overview of the CMIP6 models used in this work, including the atmosphere components, the nominal resolution in longitude and lati-
tude, and the number of vertical model levels

CMIP6 model Run Atmospheric model Model family Version References

ACCESS-CM2 r1i1p1f1 MetUM-HadGEM3-GA7.1 (N96, 192 × 
144, 85 lv)

HadGAM/UM v20210317 Bi et al. (2020)

ACCESS-ESM1-5 r1i1p1f1 HadGAM2 (r1.1, N96, 192 × 145, 38 lv) HadGAM/UM v20210318 Ziehn et al. (2020)
BCC-CSM2-MR r2i1p1f1 BCC-AGCM3-MR (320 × 160, 46 lv) CAM v20181216 Wu et al. (2019)
BCC-ESM1 r1i1p1f1 BCC-AGCM3-Chem CAM v20181220 Wu et al. (2020)
CanESM5 r1i1p1f1 CanAM5 (T63, T63 Linear Gaussian 

Grid, 128 × 64, 49 lv)
CanAM v20190429 Swart et al. (2019)

CESM2 r4i1p1f1 CAM6 (1deg, 288 × 192, 32 lv) CAM v20190308 Danabasoglu et al. (2020)
CESM2-FV2 r1i1p1f1 CAM6 (2deg, 144 × 96, 32 lv) CAM v20191120 Danabasoglu et al. (2020)
CESM2-WACCM r1i1p1f1 WACCM6 (1deg, 288 × 192, 70 lv) CAM v20190227 Danabasoglu et al. (2020)
CESM2-WACCM-FV2 r1i1p1f1 WACCM6 (2deg, 144 × 96, 70 lv) CAM v20191120 Danabasoglu et al. (2020)
CMCC-CM2-HR4 r1i1p1f1 CAM4 (1 deg, 288 × 192, 26 lv) CAM v20200904 Cherchi et al. (2019)
CMCC-CM2-SR5 r1i1p1f1 CAM5.3 (1 deg, 288 × 192, 30 lv) CAM v20200616 Cherchi et al. (2019)
CMCC-ESM2 r1i1p1f1 CAM5.3 (1deg, 288 × 192, 30 lv) CAM v20210202 Lovato et al. (2022)
CNRM-CM6-1 r1i1p1f2 Arpege 6.3 (T127, rg with 24572 gp, 91 

lv)
ARPEGE v20190219 Voldoire et al. (2019)

CNRM-CM6-1-HR r1i1p1f2 Arpege 6.3 (T359, rg with 181724 gp, 
91 lv)

ARPEGE v20191202 Voldoire et al. (2019)

CNRM-ESM2-1 r1i1p1f2 Arpege 6.3 (T127, rg with 24572 gp, 91 
lv)

ARPEGE v20191021 Séférian et al. (2019)

EC-Earth3 r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512 × 
256, 91 lv)

IFS v20200310 Döscher et al. (2022)

EC-Earth3-AerChem r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512 × 
256, 91 lv)

IFS v20200624 Döscher et al. (2022)

EC-Earth3-CC r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512 × 
256, 91 lv)

IFS v20210113 Döscher et al. (2022)

EC-Earth3-Veg r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512 × 
256, 91 lv)

IFS v20221112 Döscher et al. (2022)

EC-Earth3-Veg-LR r1i1p1f1 IFS cy36r4 (TL159, linearly rg, 320 × 
160, 62 lv)

IFS v20201123 Döscher et al. (2022)

FGOALS-f3-L r1i1p1f1 FAMIL2.2 (c96, 360 × 180, 32 lv) GAMIL v20191019 He et al. (2020)
FGOALS-g3 r1i1p1f1 GAMIL3 (180 × 80, 26 lv) GAMIL v20190820 Li et al. (2020b)
GFDL-CM4 r1i1p1f1 GFDL-AM4.0.1 (cubed sphere, c96, 360 

× 180, 33 lv)
GFDL-AM v20180701 Held et al. (2019)

GFDL-ESM4 r1i1p1f1 GFDL-AM4.1 (cubed sphere, c96, 360 × 
180, 46 lv)

GFDL-AM v20180701 Dunne et al. (2020)

GISS-E2-2-G r1i1p1f1 GISS-E2.2 (144 × 90, 102 lv) GISS-E2 v20191120 Rind et al. (2020)
HadGEM3-GC31-LL r1i1p1f3 MetUM-HadGEM3-GA7.1 (N96, 192 × 

144, 85 lv)
HadGAM/UM v20191207 Roberts et al. (2019)

HadGEM3-GC31-MM r1i1p1f3 MetUM-HadGEM3-GA7.1 (N126, 432 × 
324, 85 lv)

HadGAM/UM v20201114 Roberts et al. (2019)

IITM-ESM r1i1p1f1 IITM-GFSv1 (T62, Linearly rg; 192 × 94 
64 lv)

GFS v20201112 Swapna et al. (2015)

INM-CM4-8 r1i1p1f1 INM-AM5-0 (2 × 1,5, 180 × 120, 21 lv) INM-AM v20190530 Volodin et al. (2018)
INM-CM5-0 r1i1p1f1 INM-AM5-0 (2 × 1,5, 180 × 120, 73 lv) INM-AM v20190610 Volodin et al. (2017)
IPSL-CM5A2-INCA r1i1p1f1 LMDZ (APv5, 96 × 96, 39 lv) LMDZ v20200729
IPSL-CM6A-LR r1i1p1f1 LMDZ (NPv6, N96, 144 × 143, 79 lv) LMDZ v20190614 Boucher et al. (2020)
IPSL-CM6A-LR-INCA r1i1p1f1 LMDZ (NPv6, 144 × 143, 79 lv) LMDZ v20210216
KACE-1-0-G r2i1p1f1 MetUM-HadGEM3-GA7.1 (N96, 192 × 

144, 85 lv)
HadGAM/UM v20200102 Lee et al. (2020a)

KIOST-ESM r1i1p1f1 GFDL-AM2.0 (cubed sphere, c48, 192 × 
96, 32 lv)

GFDL-AM v20210601 Pak et al. (2021)
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Appendix 6: Extensive CMIP6 evaluation

The evaluation of the different CMIP6 models was car-
ried out for multiple models. As not all models had all the 
required data for the heat analysis, they were not included in 
the paper. However, the complete overview of the evaluation 
can be found in Fig. 15. Here, the threshold for model exclu-
sion equals 0.844. A detailed description of the atmospheric 
components of the different CMIP6 models can be found 
in Table 7. Additionally, the version of the dataset for the 
historical pressure is given.
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Table 7   (continued)

CMIP6 model Run Atmospheric model Model family Version References

MIROC6 r1i1p1f1 CCSR AGCM (T85, 256 × 128, 81 lv) MIROC-AGCM/CCSR v20191016 Tatebe et al. (2019)
MIROC-ES2L r1i1p1f2 CCSR AGCM (T42, 128 × 64, 40 lv) MIROC-AGCM/CCSR v20200318 Hajima et al. (2020)
MPI-ESM1-2-HR r1i1p1f1 ECHAM6.3 (spectral T63, 384 × 192, 

95 lv)
ECHAM v20190710 Mauritsen et al. (2019)

MPI-ESM1-2-LR r1i1p1f1 ECHAM6.3 (spectral T63, 192 × 96, 47 
lv)

ECHAM v20190710 Mauritsen et al. (2019)

MPI-ESM-1-2-HAM r1i1p1f1 ECHAM6.3 (spectral T63, 192 × 96, 47 
lv)

ECHAM v20190627 Müller et al. (2018)

MRI-ESM2-0 r1i1p1f1 MRI-AGCM3.5 (TL159, 302 × 160, 80 
lv)

GSMUV/MRI-AGCM v20191108 Yukimoto et al. (2019)

NESM3 r1i1p1f1 ECHAM v6.3 (T63, 192 × 96, 47 lv) ECHAM v20190812 Cao et al. (2018)
NorCPM1 r1i1p1f1 CAM-OSLO4.1 (2deg, 144 × 96, 26lv) CAM v20200724 Bethke et al. (2021)
NorESM2-LM r1i1p1f1 CAM-OSLO (2deg, 144 × 96, 32 lv) CAM v20190815 Seland et al. (2020)
NorESM2-MM r1i1p1f1 CAM-OSLO (1deg, 288 × 192, 32 lv) CAM v20191108 Seland et al. (2020)
SAM0-UNICON r1i1p1f1 CAM5.3 (288 × 192, 30 lv) CAM v20190323 Park et al. (2019)
TaiESM1 r1i1p1f1 TaiAM1 (.9 × 1.25 deg, 288 × 192, 30 lv) CAM v20210517 Lee et al. (2020b)
UKESM1-0-LL r1i1p1f2 MetUM-HadGEM3-GA7.1 (N96, 192 × 

144, 85 lv)
HadGAM/UM v20190715 Sellar et al. (2019)

The downloaded version as well as the reference articles are also included. ‘rg’ refers to a Reduced Gaussian grid configuration, and ‘gp’ refers 
to grid points. ‘Model family’ follows the grouping made by Brands (2022b) and Brunner et al. (2020), with italics referring to GCMs that did 
not fulfil the grouping criteria

https://www.carmine-project.eu/
https://www.carmine-project.eu/
https://doi.org/10.48804/MINSTY
https://doi.org/10.48804/MINSTY
https://doi.org/10.48804/7HHSVV
https://doi.org/10.48804/7HHSVV
https://doi.org/10.48804/VINEVJ
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