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The Role of Digital Technology 
in Climate Technology Innovation† 

By KARAM JO* 

In this paper, I empirically estimate the relationship between digital 
technology and climate technology using the United States Patent and 
Trademark Office’s patent database. I find that innovation in digital 
technology increases the number of patents for climate technology by 
17.3% on average, with digital data-processing technology and 
machine-learning-related technologies especially playing a key role in 
this relationship. Designing and implementing detailed policies that 
take into account the relationship between the two technologies will 
help us reduce the time required to achieve carbon neutrality and shift 
to the digital economy. 

Key Word: Digital Technology, Climate Technology, 
ICT Energy Consumption, Energy Efficiency 

JEL Code: O31, O33, O38, Q48, Q54, Q55, Q58 
 
 
 I. Introduction 
 

limate change and the digital transformation are two of the most important 
phenomena that have been transforming our daily lives, and they will continue 

to do so for many years to come. Consequently, researchers have extensively studied 
both topics in recent years, and governments in various countries are currently 
discussing and creating policies to address these changes.1 In terms of technological 
development, the two phenomena could be either complementary or confrontational. 
For instance, the implementation of smart grid technology, which can be widely 
adopted with the help of digital transformation, could help mitigate climate change 
by promoting efficient electricity usage, distribution, and trade (European  
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1The literature on the effect of climate change on the economy is extensive. Nordhaus (2019) can be a good 

starting point to follow this literature. Han et al. (2021) is a good example documenting various studies and policies 
related to the digital transformation. Kim and Kim (2020) documents climate policies implemented abroad, including 
in the EU. Also, Jang et al. (2020) compares the EU’s Green Deal and Korea’s Green New Deal 
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Commission, 2020). In this case, the advancement of digital technology helps 
mitigate climate change. However, the proliferation of digital transformation could 
also accelerate climate change. Data centers, which support digital transformation, 
consume energy intensively and contribute to heat emission problems. Consequently, 
the direct negative impact of the digital transformation process on climate change 
grows as the number of data centers increases. 2  Moreover, the semiconductor 
manufacturing industry, which is crucial for the digital transformation, is a major 
energy-intensive sector. As the transition to clean renewable energy is not yet 
complete, some of the energy required for semiconductor manufacturing must be 
produced using fossil fuels. Therefore, the increasing demand for semiconductors 
due to the digital transformation will raise greenhouse gas (GHG) emissions and 
have an adverse effect on the climate. 

Nonetheless, the microfabrication process, which is the primary technological 
breakthrough in the semiconductor manufacturing industry, allows semiconductors 
to process the same information while using less energy.3 As a result, this innovation 
reduces the amount of electricity used in all places that utilize semiconductors, from 
typical households to data centers. In fact, Masanet et al. (2020) demonstrates that 
although the volume of information processed increased by 550% from 2010 to 
2018, the electric power required by data centers only rose by 6%. This improvement 
was due to the enhanced efficiency of microprocessors and the reduction of idle 
power usage, resulting in a swift decline in the amount of electric power required to 
process the same amount of information. 

More direct examples of climate technologies which use digital technologies 
include building efficiency technologies and sustainable agriculture technologies. By 
utilizing digital technologies, building owners and operators can monitor and adjust 
their heating, ventilation, and air conditioning (HVAC) systems more efficiently, 
resulting in reduced energy usage and lower carbon emissions. Similarly, digital 
technologies can help reduce fertilizer and water use. Digital tools such as sensors 
and drones can be used to monitor crop growth and soil conditions, enabling farmers 
to make more informed decisions about when and how much to water and fertilize 
their crops. By optimizing these inputs, farmers can reduce waste and improve yields 
while also minimizing the environmental impact of their farming practices. These 
are just a few of the examples showing how the integration of digital technologies in 
climate technologies can offer new opportunities to reduce greenhouse gas emissions 
and mitigate the effects of climate change while also increasing efficiency and 
productivity in various sectors. These climate technologies would not exist if digital 
technologies were not present. 

Innovation in digital technology can help mitigate climate change through various 
channels, as is clear from these previous examples. Thus, climate policies that can 
lower the returns from investments in digital technologies, such as those that hamper 
the construction and expansion of data centers or semiconductor manufacturing 
facilities, could adversely affect climate change prevention efforts by reducing the 

 
2According to IEA (2022), electricity used by data centers amounts to approximately 0.9-1.3% of the total 

electricity used worldwide in 2021, and data centers contribute about 0.6% of the energy-related greenhouse gas 
emissions. Also, the demand for digital services has been increasing rapidly. 

3 According to Samsung, for example, their three nano-fabrication processes achieve a 23% performance 
increase and a 45% power consumption reduction compared to their prior fabrication process (https://bit.ly/3R0isXQ). 
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innovation rate of digital technology. Because digital transformation and climate 
change affect each other in various dimensions, the European Union, for example, 
seeks to understand the interaction between the two and makes an effort to design 
policies reflecting these relationships.4 In Korea, however, we lack discussions of 
the relationship between digital transformation and climate change and its mid- to 
long-term effect in terms of policy design. Also, to the best of my knowledge, there 
is no study examining the relationship between digital technology and climate 
technology and discussing its policy implications. 

Thus, in this paper, I study the relationship between digital technology and climate 
technology to enrich our understanding of the relationship between the digital 
transformation and climate change. Then, I derive implications related to the 
relationship between climate policy and digital transformation policy. To do this, I 
empirically estimate the relationship between digital technology and climate 
technology using the United States Patent and Trademark Office’s (USPTO) patent 
database. I use patent technology classification codes included in the patent data to 
classify patents for digital technology and patents for climate technology and 
examine the relationship between the two technologies using detailed sub-
classifications for each technology. By using country information for inventors and 
owners for each patent included in USPTO’s patent data, I construct and use country-
technology-year-level data in the analysis. 

In the empirical analysis, I find the following results. First, innovation in digital 
technology increases the number of patents for climate technology by 17.3% on 
average, and digital data-processing technology and machine-learning-related 
technologies especially play a key role in this relationship. Second, digital data-
processing technology and machine-learning-related technologies positively affect 
developments in smart-grid-related technologies. Lastly, digital technology 
particularly helps with advancements in energy-saving building technologies, GHG 
processing and reduction technologies, technologies to reduce the energy used by 
information and communication technology (ICT), and green transportation 
technologies. However, statistically significant results on the effects of climate 
technologies on digital technology could not be found for the purposes of this paper. 
Designing and implementing detailed policies that take into account the relationship 
between the two technologies will help us to reduce the time required to achieve 
carbon neutrality and shift to the digital economy. 

The rest of this paper is organized as follows. Chapter II introduces previous 
studies related to this paper. Chapter III explains the data and measures used in the 
empirical analysis. Chapter IV explains the empirical model specification and 
presents the analysis results. Chapter V discusses policy implications. Finally, 
Chapter VI concludes the paper. 
  

 
4 European Union Committee, “Digitalisation for the benefit of the environment: Council approves 

conclusions,” press announcement, 2020. 12. 17 (https://www.consilium.europa.eu/en/press/press-releases/2020/ 
12/17/digitalisation-for-the-benefit-of-the-environment-council-approves-conclusions/). 
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II. Literature Review 
  

Numerous studies have examined the impact of digital transformation on climate 
change, focusing mainly on its effect on energy consumption. Horner et al. (2016) 
have analyzed these studies and explained how ICT (which includes computers, 
mobile devices, and networks) can both decrease or increase energy consumption. 
The direct energy effect of ICT stems from its energy usage during its operation and 
manufacturing. The indirect energy effect is the result of changes in energy 
consumption when ICT is used to modify the way we use existing products and 
services. Examples of the latter include using smart building technologies to adjust 
air flows in real time or reducing air travel through online conferences. Moreover, e-
commerce has altered the energy use composition for goods transportation. Horner 
et al. (2016) suggest that the indirect energy effect does not necessarily reduce 
energy use, as e-commerce has increased freight volumes to improve delivery 
outcomes. Nevertheless, previous research suggests that the indirect energy effect 
has the potential to reduce energy use significantly depending on efficient 
technology usage and consumer behavior. 

Koomey et al. (2011) focus on examining advancements in microprocessor 
technology and how these have contributed to reducing energy consumption. They 
show that the computation per kilowatt-hour for microprocessors doubled every 18 
months from 1946 to 2009 owing to the development of computer technology and 
transistor miniaturization. Also, because the theoretical limit for the computation per 
kilowatt-hour improvement is 2.5  ×   10଺ times higher than what was realized up 
to 2009, there is much room for improvement in energy use, even in 2023 if we 
assume that the speed of improvement has remained the same since 2009. This 
suggests that, during the diffusion of digital transformation, energy usage across the 
economy could be reduced by decreasing ICT's energy consumption through these 
developments. Koomey et al. (2011)’s findings exemplify the economic significance 
of digital technology's impact on climate change, which is further elaborated on in 
this paper. 

IEA (2022), on the other hand, compiles recent research findings on electricity 
consumption and GHG emissions resulting from the digital transformation. 
Compared to 2015, the number of internet users increased by 60%, internet data 
traffic rose by 440%, the overall processed data volume by data centers rose by 
260%, and electricity usage by data centers and transmission networks increased by 
10-60% and 20-60%, respectively, in 2021. In 2020, the share of GHG emissions 
from data centers out of the total GHG emissions was 0.6%, and the share of energy-
related GHG emissions was 0.9%. Based on 2021 data, the global share of electricity 
used by data centers and transmission networks was around 2-2.7%. Thus, despite 
rapid diffusion, electricity consumption from digital transformation did not increase 
as quickly due to ICT energy efficiency improvements, the increased use of 
renewable energy by ICT firms, and economy-wide decarbonization efforts in the 
electric grid. Nonetheless, the IEA (2022) emphasizes that we need to reduce our 
electricity consumption by half by 2030 to reach the net-zero goal, despite these 
efforts. 

While promoting efficient energy use is an important way by which the digital 
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transformation can mitigate climate change, as demonstrated by the studies 
mentioned earlier, there are many other ways in which the digital transformation can 
contribute to this effort. According to CODES (2022), digital transformation efforts 
can move towards improving climate and social sustainability by sharing values and 
objectives, mitigating negative impacts on the environment and society, and driving 
innovation. The Global e-Sustainability Initiative (GeSI) (2015) highlights how ICT 
can reduce greenhouse gas emissions in crucial sectors such as manufacturing, 
agriculture, construction, and energy through automation and optimization, going 
beyond merely reducing their energy consumption. For instance, ICT is expected to 
have a positive impact on the environment by, for instance, increasing grain 
production by 30% in 2030 compared to 2020 through smart farming and significantly 
reducing water and oil consumption. The Royal Society (2020) not only documents 
empirical facts but also suggests specific ways to use digital technology to mitigate 
climate change. First, constructing data infrastructure to monitor GHG emissions can 
help data-based services reduce GHG emissions by providing stable and immediate 
access to data. Secondly, increasing efforts to use renewable energies in the digital 
sector can help them lower their GHG emissions. Finally, research and innovation 
can help find new ways for digital transformation efforts to mitigate GHG emissions. 

Previous studies have shown that digital technology, or ICT, can help mitigate 
GHG emissions through efficiency gains in various tasks and by automation and 
improved electricity usage. In addition to these findings, I contribute to this literature 
by highlighting the potential for digital technology developments to impact the 
progress of climate technology directly. 

 
III. Data and Measures 

  
In this section, I explain the data and measures used to estimate the relationship 

between digital technology and climate technology. I provide a detailed explanation 
of how I construct the necessary measures using US patent data, as there are many 
factors to consider to use this data properly. The key in this section is the construction 
of a digital technology shock that is plausibly exogenous to firms’ other decisions 
that affect their climate technology development. Several papers, such as those by 
the OECD (2020), Kim et al. (2018), Miranda-Agrippino et al. (2019), and Sharma 
and Narayan (2022), particularly the last two, use patent databases to a construct 
technology shock. Miranda-Agrippino et al. (2019) construct an exogenous instrument 
variable for a technology news shock using residuals from the regression of the 
growth rate of the number of patent applications to its own lag along with predictions 
of macro-variables, monetary policy variables, and fiscal policy variables. They analyze 
the effects of these variables on macro and financial variables. Sharma and Narayan 
(2022) construct a technology shock using the detrended number of patent applications 
each year, where they detrend the number of patent applications using the previous 
five-year average number of patent applications for each year. The constructed 
technology shock is used to analyze the effect of this variable on stock returns. 

Although there have been several efforts to estimate a technology shock using 
patent databases, there is no general method by which to do so. The key is to find 
changes in technology that are exogenous to the dependent variables of interest, and 
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in this paper, I define a technology shock as a sharp increase (spike) in innovative 
technological development for each technology field. A detailed discussion of this 
measure is given in subsection C. 

 
A. Data 

 
I use the USPTO’s patent database to ascertain the levels of development in digital 

technology and climate technology for each OECD member country.5 The USPTO 
patent database provides detailed information on ultimately granted patent 
applications filed by individuals or firms worldwide, including abstracts, lists of 
previous patents cited, technology classes, lists of inventors, and names and 
addresses of owners and inventors. The USPTO patent database used for the analysis 
here contains a set of ultimately granted patent applications from 1976 to 2021. As 
is well known in previous studies that also use the USPTO patent database, it takes 
from one year to even as long as ten years, three years on average, for filed patent 
applications to be granted (see Figure 1-A). Thus, the patent granted year is too far 
away from the year the innovation occurred. Although the application year may not 
be the exact year the innovation occurred as well owing to the time required to 
prepare the patent application documents, this gap should be narrower. Thus, 
following the previous studies, I use the application year as a proxy for the year the 
technological innovation occurred. 

Also, because the USPTO patent database contains only ultimately granted patent 
applications and given that the granting process excessively long, the number of 
patent applications filed falls rapidly after 2016, as shown in Figure 1-B. For 
example, most of the patent applications filed with USPTO in 2021 were under 
review as of 2021. Thus, the number of ultimately granted patent applications among 
the 2021 cohort is very low. Therefore, despite the possibility that the actual number 
of patent applications filed as well as the quality of the applications in 2021 may 
equal those factors for 2016 and thus that the number of ultimately granted patent 
applications counted in 2030 is identical in both years, the number of ultimately 
granted 2021 patent applications should be very low if counted in 2021. In other 
words, because the patent application examination process is long, the number of 
patents created by firms, hence in the economy in 2021, becomes observationally 
low compared to that in 2016 in the 2021 version of the USPTO patent database. To 
correct for such bias coming from this type of examination lag, I use patent 
applications filed up to 2016 in the subsequent analyses. Furthermore, I use the 
patent applications filed by entities in the 38 OECD member countries in the 
upcoming analyses, as these should be comparable in terms of the quantity, quality, 
and composition of the technologies. 

To classify the technology of each patent, I use USPTO’s Cooperative Patent 
Classification (CPC) scheme in the following analyses, which USPTO constantly 
updates to maintain time consistency throughout all of the years the patent data are 
available. There are nine codes in the 1-digit CPC section, 130 in the 3-digit CPC 
class, and 670 in the 4-digit CPC subclass. Table 1 shows the number of patent 

 
5I download and use the March 29, 2022 version of PatentsView’s bulk download service for the USPTO patent 

database. PatentsView (www.patentsview.org) is owned and maintained by the USPTO. 
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A. Average granting process lags 

 
 

B. Number of ultimately granted patent applications by OECD countries 

 
FIGURE 1. USPTO PATENT APPLICATIONS 

  
TABLE 1—TOP 10 PATENTING OECD MEMBER COUNTRIES 

Country Number of Patents CPC4 CPC3 
United States 137,923 586 122 

Japan 48,397 494 117 
Korea 20,120 393 112 

Germany 13,688 480 118 
France 5,244 390 114 

United Kingdom 4,283 362 111 
Switzerland 3,861 338 106 

Canada 3,675 375 107 
Netherlands 3,469 296 102 

Sweden 2,870 269 96 



28 KDI Journal of Economic Policy MAY 2023 

applications and the number of CPC codes for the top ten OECD member countries 
in terms of the total number of patent applications in 2016. Table A1 in the Appendix 
shows the same information for all 38 OECD member countries. For more detailed 
explanations and analyses of the USPTO patent database, I refer to Hall et al. (2001). 

 
B. Climate Technology and Digital Technology Definitions 

 
As briefly explained previously, USPTO assigns one or more CPC codes to each 

patent to classify the technologies each patent contains. Among these CPC codes, 
Y02 is the code USPTO additionally assigns to patents to track the developments in 
technologies related to mitigation and adaptation to climate change. This code was 
initially developed jointly by the European Patent Office (EPO), the United Nations 
(UN), and the International Centre on Trade and Sustainable Development (ICTSD) 
and used thereafter. To develop an automated way to assign Y02 to relevant patents, 
climate technology experts from the three institutions first applied textual analysis 
to all available descriptions in the patent database, such as abstracts and claims, to 
select patents broadly related to climate technology. The experts then manually 
inspected and removed false matches using additional information, such as 
technology classifications, to finalize the assignment. This routine is developed as 
an algorithm that can automatically assign Y02 to new patents under the supervision 
of patent experts, and this algorithm has been maintained and updated constantly. 
See Veefkind et al. (2012) for a more detailed explanation. Thus, in this paper, I 
classify patents assigned to Y02 as patents for climate technology. For example, 
Y02C under Y02 is for technologies to capture, store, sequestrate, or dispose of 
GHG, and especially Y02D is for technologies to lower the power consumption of 
ICT products by, for instance, low-power computing. 

Among CPC classes, G06 pertains to technologies for computing, calculating, and 
counting. Under G06, six subclasses, G06F, G06K, G06N, G06Q, G06T, and G06V, 
are codes assigned to technologies related to digital transformation technologies. 
Thus, I classify patents assigned to these six subclasses as patents for digital 
technology. For example, one of the CPC groups under G06N, G06N 20/00, is for 
machine-learning-related technologies, and one of the CPC groups under G06F, 
G06F 1/32, is for technologies for lowering device power consumption levels by 
processing digital data. 

Figure 2 shows digital and climate technology development trends worldwide, 
where the degree of development is measured as the share of patent applications for 
digital and/or climate technology from the total number of patent applications filed 
each year.6 Because each patent is assigned to one or more CPC, there are cases in 
which a patent is assigned to both digital technology and climate technology. In such 
cases, I include the patents in both pools of patents for digital and climate 
technologies when counting the number of patents in the corresponding pools. Then, 
I additionally define climate + digital technology — technology used for both 
climate change mitigation and digital transformation — and compute a trend for the  

 
6Henceforth, I will use the term patent as an ultimately granted patent application. Also, the year corresponding 

to any measures constructed using the patents are the year the patent applications are filed. 
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FIGURE 2. TRENDS FOR DIGITAL AND CLIMATE TECHNOLOGIES 

  
development of such technology separately. The share of patents for climate 
technology among the patents registered with USPTO stagnated in the 1980s and 
1990s and then showed a steady increase in the 2000s. This was followed by another 
period of stagnation after 2010. In contrast, the share of patents for digital technology 
showed a steady increase in all periods. Also, the share of patents for climate + digital 
technology, such as G06F 1/32, showed a steady increase in all periods as well. 

 
C. Different Revenue Uses from a Carbon Tax 

 
To estimate the effect of digital technology on climate technology and vice versa, 

I define a rapid increase (spike) in the number of innovative technological 
improvements as a technology shock for each technology and compute as follows. 
Just as research papers, patents are required to cite all of the previous patents their 
technological improvements are based on or related to. Thus, previous studies using 
the patent database use the number of forward citations received as a measure of the 
quality or degree of improvement (innovation) each patent contains. Thus, I define 
patents with the number of forward citations received above the 99th percentile of the 
forward citation distribution for all patents worldwide as patents related to innovative 
technological improvements. 

In this paper, I use the technology-year mean-adjusted values for the number of 
forward citations received, where the technology is defined at CPC4-level. As is well 
documented in Hall et al. (2001), both the number of patents created each year and 
the corresponding trend vary across different technologies. Thus, the number of 
patents which could potentially cite a specific patent may differ for each technology 
and year. Also, patents that were created in early periods have the potential 
mechanically to receive more citations compared to recent patents. In an extreme 
case, patents created today should have received zero citations. Due to these reasons, 
for example, a patent related to internal combustion engines created in 1990 and that 
received 2,000 forward citations could have a lower degree of innovation than an AI-
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related patent created in 2021 that received 50 forward citations. Thus, it is necessary 
to adjust for these biases in the number of forward citations to use this measure 
correctly to assess the quality of patents or the degree of innovation each patent 
contains. To do this, I compute the average number of forward citations received by 
patents in each technology-year and divide the number of forward citations each 
patent in each technology-year received by this average number accordingly.7 

Then, I define the share of the number of patents for innovative technological 
improvements from all patents as a measure of the degree of innovative 
technological improvement for each technology. Here, I use the technology-year 
mean-adjusted number of forward citations received when counting the number of 
patents to take the quality of innovation into account. Finally, I compute the DHS 
(Davis, Haltiwanger, and Schuh, 1998) growth rate of this degree of innovative 
technological improvement for each technology-year, defining the year when the 
growth rate is above the 75th percentile of the growth rate distribution for each 
technology as the year the technology shock (spike) occurred for that technology. 
According to this methodology, the years the digital technology shock occurred 
within the regression sample period (1983 to 2016, a total of 34 years) are 1983, 
1987, 1989, 1991, 1995, 1999, 2001, 2003, 2004, and 2010 (a total of ten years). For 
2010, such digital technology shocks include a total of 495 versatile patents, such as 
“Electronic Device with Text Error Correction Based on Voice Recognition Data” 
(Apple, US8719014), “System and Method for Calculating the Thermal Mass of a 
Building” (Ecofactor Inc., US8131497), Digital Mapping System (Google LLC, 
US7894984), and “Controlling Power Consumption of a Mobile Device Based on 
Gesture Recognition” (Qualcomm Inc., US9086875). We could think of other ways 
to measure a digital technology shock, such as finding an exogenous shock to digital 
technology, including government policy changes, and using them as instrument 
variables. However, I was unable to find such exogenous variations. 

 
IV. Empirical Analysis 

  
In this section, I estimate the effect of digital technology on climate technology 

for various levels of technological aggregation. 
 

A. Model Specifications 
 

To estimate the effect of digital technology (a subset of G06 defined previously) 
on climate technology (Y02), I estimate the following regression model: 

(1)    { } { }
1log( ) climate tech digital shock

cjt j t s ct cj cjtnpat I I           

The dependent variable log( )cjtnpat   that represents the developments in 

 
7Henceforth, the terms number of citations, number of forward citations, and number of patents refer to this 

technology-year mean-adjusted number of forward citations received. 
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technology j  is the number of patent applications for each technology ( j ) in each 
country ( c ) in year t . As explained previously, I use the technology-year mean-
adjusted number of forward citations received when counting the number of patent 
applications to take into account the quality of innovation, where CPC4 is used for 
the technology classification. The independent variable { }climate tech

jI   is a dummy 
variable equal to one if technology j  belongs to the climate technology Y02, and 

{ }digital shock
t sI    is a dummy variable equal to one if we observe a digital technology 

shock in year t s  . Thus, the coefficient in front of the interaction term 
{ } { }climate tech digital shock
j t sI I   , 1   estimates the additional effect of digital technology 

shock s   years ago on climate technology compared to all other technologies. 
Because it takes time for the USPTO examiners to evaluate the patent applications 
submitted to the USPTO, to protect their rights, and to make the information 
available to the public, s  should be more than one year. Also, because other firms 
need time to learn the available information and apply it to their technological 
developments and then spend more time preparing and submitting patent 
applications to the USPTO, s  should be more than two years. Thus, I use 3s   in 
the baseline regression analysis. To test the robustness of the results, I also use 
various values of s  and report the results in Table B1 in the Appendix. The 
coefficient estimate for the effect of a digital technology shock in the same year on 
climate technology, however, is small and statistically insignificant. 

ct   is a country-year fixed effect to control for country-level transitory 
components that could affect technological development trends and the patent 
application submission difference across countries. Given that { }digital shock

t sI    is 
absorbed by ct , it is not included as an independent variable separately. ct  is a 
country-technology fixed effect to control for the difference in the compositions of 
technological developments across countries. Because { }climate tech

jI   is absorbed by 
cj , it is not included as an independent variable separately.   is a constant term. 

As we need to use the three-year prior technology shock in this regression, I limit 
the analysis sample period to the years 1983 to 2016 (34 years). There are 38 
countries with 666 CPC4 in this regression sample, and the total number of 
observations is 241,402. The mean and standard deviation of the dependent variable 
log( )cjtnpat  are 1.97, and 1.78, respectively. The number of years in which a digital 
technology shock amounts to ten, as explained previously. 

 
B. Baseline Result 

 
Table 2 shows the baseline regression results for no fixed effects, the country-year 

fixed effect only, the country-technology fixed effect only, and both the country-
year and the country-technology fixed effects included. As shown in the figure, the 
estimates for 1  are positive and statistically significant for all combinations of 
fixed effects. The results for the main specification in column four show that a digital 
technology shock additionally increases the number (technology-year-adjusted 
number of forward citations received) of climate-technology-related patents by 1.24 
(exp(0.213)), compared to all other technologies. As the average number of climate-
technology-related patents each year is 7.17 (exp(1.97)), this result shows that a 
digital technology shock increases the number of climate-technology-related patents 
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TABLE 2—EFFECT OF A DIGITAL TECHNOLOGY SHOCK ON CLIMATE TECHNOLOGY 

Dependent Variable: log(𝑛𝑝𝑎𝑡௖௜௧) (1) (2) (3) (4) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.455*** 0.756*** 0.307* 0.213** 
(0.031) (0.036) (0.153) (0.102) 

Constants 
1.625*** 1.621*** 1.627*** 1.629*** 
(0.013) (0.001) (0.028) (0.001) 

Observations 241,402 241,402 241,402 241,402 
Fixed effects no ct cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
by around 17.3% on average. This is an important result showing that, in addition to 
the previous findings that the digital transformation process helps mitigate climate 
change by reducing energy use in various ways, the development of digital 
technology additionally helps mitigate climate change by promoting the 
development of climate technology, which is very important in the long run. Thus, it 
is clear that government policies related to the development of digital technology 
should have an important effect on the development of climate technology. 

 
C. Technology Shock Measure Validation and Robustness Test 

 
To test whether the technology shock measure used for the previous analysis 

captures a simple trend or spurious relationship between digital technology and 
climate technology, first I regress the current ( t ) climate technology on the future 
( t s  ) digital technology shock measure. Because I need to compute the future 
technology shock, I limit the regression sample period so that it ranges from 1983 to 
2013. The first column of Table 3 shows the result for 3s  . As shown in the table, 
the coefficient is small and statistically insignificant. Thus, there is a low possibility 
that the current digital technology shock measure simply captures spurious 
relationships. Table B2 in the Appendix shows the results for 1s   and 2s  . We 
can observe that the coefficient for 1s   is statistically significant at 10%. This 
may stem from the possible release of information for the developed technology 
before patent application submission, or the large sample size (221,532 
observations). However, this result requires further analysis. For 2s  , the result is 
statistically insignificant. 

The second column in Table 3 shows the estimate of the effect of a digital 
technology shock on all technologies. This is computed to test whether we obtain the 
baseline results not because the digital technology shock measure indeed captures its 
effect on climate technology but because it captures its effect on overall technology 
or because there is merely a spurious relationship. However, the resulting coefficient 
estimate is small and statistically insignificant, implying that the possibility of such 
concerns actually coming to be is low. 

The third column in Table 3 shows the estimate of the effect of a climate 
technology shock on digital technology. This reverse causality estimation allows us 
to test whether the baseline results are driven by a simple correlation or a common 
trend between digital technology and climate technology and not by the effect of  
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TABLE 3—ROBUSTNESS CHECK FOR THE EFFECT OF DIGITAL TECHNOLOGY SHOCK I 

Dependent Variable: log(𝑛𝑝𝑎𝑡௖௜௧) (1) (2) (3) (4) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.023  
(0.111)  𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.104  

(0.063)  𝐼௜{ௗ௜௚௜௧௔௟ ௧௘௖௛} × 𝐼௧ିଷ{௖௟௜௠௔௧௘ ௦௛௢௖௞} 0.346 0.346 
(0.210) (0.210) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.213** 

(0.102) 

Constants 
1.645*** 1.564*** 1.629*** 1.626*** 
(0.002) (0.053) (0.001) (0.002) 

Observations 221,532 241,402 241,402 241,402 
Fixed effects ct, cj cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
digital technology. This test is important as there is no strong reason as to why 
climate technology can directly affect digital technology. As shown, the result is 
statistically insignificant. Thus, the baseline result is likely not capturing a simple 
correlation. 

The fourth column of Table 3 shows the result including { } { }
3

digital  tech climate shock
i tI I   

in the baseline regression specification (1) to estimate the effect of digital technology 
on climate technology, controlling for the effect of a climate technology shock on 
digital technology. As shown, the coefficient estimates are identical to those before. 

Finally, Table 4 shows whether the baseline results hold even after controlling for 
the effect of past (three years prior) climate technology shocks on climate technology 
itself. I run this test as the baseline estimates could be biased if climate technology 
shocks happened to occur simultaneously with digital technology shocks. However, 
even when controlling for climate technology shocks, the effect of a digital 
technology shock remains statistically identical to the baseline result. Furthermore, 
as shown in the fourth column, the effect of a climate technology shock becomes 
statistically insignificant after controlling for full fixed effects. All of the results 
above suggest that the baseline regression result more likely identifies the (causal) 
effect of digital technology on climate technology than otherwise. 

Additionally, I estimate the effect of a digital technology shock on climate + 
digital technology, as briefly explained in the previous section. Although the share 
of patents for this type of technology is quite small (0.6% of the total number of 
patents), as shown in Figure 2, it could be used as an additional robustness test for 
the baseline results, removing the indirect effect of digital technology, as it is an 
aspect of climate technology that directly uses digital technology. In this regression 
analysis, the dependent variable is the country-year-level logged citation-adjusted 
number of forward citations for patents pertaining to climate + digital technology, 
and the independent variable is the yearly-level dummy variable for a digital 
technology shock. Thus, I include the country-fixed effect only in this regression. 
These results are reported in Table B3 in the Appendix. The coefficient estimate of 
0.304 is similar to the baseline result. However, the statistical significance is low  
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TABLE 4—ROBUSTNESS CHECK FOR THE EFFECT OF DIGITAL TECHNOLOGY SHOCK II 

Dependent Variable: log(𝑛𝑝𝑎𝑡௖௜௧) (1) (2) (3) (4) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.324*** 0.562*** 0.299* 0.207** 
(0.060) (0.071) (0.149) (0.100) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{௖௟௜௠௔௧௘ ௦௛௢௖௞} 0.243*** 0.360*** 0.160 0.101 
(0.076) (0.090) (0.132) (0.089) 

Constants 
1.624*** 1.620*** 1.626*** 1.628*** 
(0.012) (0.001) (0.028) (0.002) 

Observations 241,402 241,402 241,402 241,402 
Fixed effects no ct cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
(10%) as the regression sample is at the country-year level, with the number of 
observations equal to 1,197. 

Furthermore, I estimate the effect of a digital technology shock on climate 
technology after separating climate + digital technology from digital technology and 
climate technology to remove any potential bias that could arise due to a potentially 
mechanical relationship between a digital technology shock and some of the climate 
technologies that are actually climate + digital technologies. As reported in the 
second column of Table B4 in the Appendix, the coefficient estimate is statistically 
identical after reassigning the climate + digital technology. For comparison purposes, 
the first column shows the baseline result. 

Finally, Table B5 in the Appendix shows the estimate of the effect of digital 
technology on climate technology, estimated by directly regressing the (logged) 
number of patent applications for climate technology on the three-year lagged 
(logged) number of patent applications for digital technology. The advantage of the 
baseline model over this regression model is that we can isolate the effect of digital 
technology on climate technology from other factors that could shift both 
technologies simultaneously, such as a spurious common trend. Additionally, we can 
estimate the effect of digital technology specific to climate technology by comparing 
it to the effects of other technologies. Nonetheless, this exercise can also confirm the 
robustness of the baseline results. Here, only country and time-fixed effects are 
separately included in this regression specification, as we only have the country-year 
variations.  

As shown in the first column, the coefficient estimate of 0.333 is statistically 
identical to the baseline estimate of 0.213 reported in Table 2. The second column in 
Table B5 estimates an additional effect of the year the digital technology shock 
occurred on climate technology by testing the interaction between the three-year 
lagged (logged) number of patent applications for digital technology and the digital 
technology shock measure used in the baseline model. Unless these years are special 
with regard to the development of climate technology notwithstanding the fact that 
these are years digital technology shocks occur, all of the digital-technology-specific 
effects should be absorbed by the number of patent applications for digital 
technology. Consistent with this perceptive, we have a statistically insignificant and 
small coefficient for the interaction term. All of the tests above confirm that the 
baseline estimate of the effect of digital technology on climate technology is robust 
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to many other specifications. 
 

D. Extension I 
 

To understand how digital technology affects climate technology in more detail, I 
extend the baseline regression specification and run several additional analyses. In 
the first extension, I test whether digital technology affects climate technology 
differentially in Korea compared to other OECD member countries. I run this test as 
we need to find causes and find ways to improve the relationship between the two 
technologies if we find that the effect is lower in Korea. To do this, I additionally test 
the interaction of a dummy variable for Korea ( { }korea

cI  ) with the baseline 
specification. As shown in the second row of the first column in Table 5, the result 
is statistically insignificant for the triple-interaction term. Thus, the relationship 
between the two technologies is due to their specific characteristics at the technology 
level, and I could not find evidence that their relationship is different in Korea due 
to government policies or the level of technological development. 

The next extension is to estimate the effect of digital technology on smart grid 
technology (Y04), and this result is reported in the second column of Table 5. The 
coefficient estimate, however, is statistically insignificant. This may stem from the 
fact that AI-related technological development, which is expected to have a large 
impact on smart grid technology, showed major developments after 2016. Thus, this 
result requires further analysis after compiling a longer dataset. Furthermore, this 
result may be driven by the fact that we are actually combining various detailed 
digital technologies and using an aggregated form of digital technology in the 
analysis. If some of these detailed digital technologies have offsetting effects on 
smart grid technology, such a result would arise. The results when testing the validity 
of the above extension analyses are reported in Table B6 in the Appendix. 

 
TABLE 5—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK, KOREA SPECIFICITY TEST, SMART GRID 

Dependent Variable: (1) (2) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.206**  

(0.098)  × 𝐼௖{௄௢௥௘௔} 0.153  

(0.162)  𝐼௜{௦௠௔௥௧ ௚௥௜ௗ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.209 
(0.140) 

Constants 
1.629*** 1.631*** 
(0.001) (0.000) 

Observations 241,402 241,402 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

  
E. Extension II 

 
Because the technology shock measure used in this paper is a dummy variable that 
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assumes zero or one at the annual level, it cannot be a good measure of fine 
technology classifications because we would not be able to separate different fine 
technologies’ movements correctly with annual-level zero one values if these fine 
technologies co-move in a broad sense. With this limitation in mind, I estimate the 
effects of finely defined digital technologies in the digital technology used in the 
baseline analysis on climate technology and examine the effect of digital technology 
in detail. 

Table 6 shows the results for Electric Digital Data Processing (G06F), Computing 
Arrangements Based on Specific Computational Models (Machine Learning-related 
technologies, G06N), and Image Data Processing or Generation in General (G06T).8 
We see that climate technology is significantly affected by these three technologies, 
which exist at the heart of digital technologies. These findings not only help us to 
understand the detailed role of the digital transformation on climate change 
mitigation as explored in the previous studies but also highlight the additional 
importance of digital technological developments on climate change mitigation. I 
will discuss this in detail in the next section, where I analyze the effects of digital 
technology on finely defined climate technologies. I report the regression results to 
test the validity of these results using the future technology shock in Table B7 in the 
Appendix. 

In addition to these aspects, I estimate the effects of finely defined digital 
technology on smart grid technology. These results are reported in Table 7. In the 
previous analysis using aggregated digital technology, the estimated coefficient was 
statistically insignificant. Here, I find statistically significant results at the 10% level 
for data-processing-related technology and machine-learning-related technology. In 
fact, it may be possible to obtain statistically more stable (significant) results for 
these in a few years when a longer dataset becomes available, as machine-learning-
related technologies improved rapidly after 2016, and smart grid technology is also 
relatively new. The robustness test for these analyses using a future technology 

 
TABLE 6—EFFECTS OF DETAILED DIGITAL TECHNOLOGY SHOCKS ON CLIMATE TECHNOLOGY 

Dependent Variable: (1) (2) (3) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௔௧௔ ௣௥௢௖௘௦௦௜௚ ௧௘௖௛ ௦௛௢௖௞} 0.269***  

(0.095)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛}  × 𝐼௧ିଷ{௠௔௖௛௜௡௘ ௟௘௔௥௡௜௡௚ ௧௘௖௛ ௦௛௢௖௞} 0.276***  

(0.085)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛}  × 𝐼௧ିଷ{௜௠௔௚௘ ௣௥௢௖௘௦௦௜௡௚ ௧௘௖௛ ௦௛௢௖௞} 0.316*** 
(0.090) 

Constants 
1.627*** 1.629*** 1.628*** 
(0.002) (0.001) (0.001) 

Observations 241,402 241,402 241,402 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
8 I also ran the same analyses for other detailed digital technologies, but I couldn’t find any statistically 

significant results in those cases. Thus, the results for these other technologies are not reported to save space. These 
detailed digital technologies include image and video recognition technologies, counting technologies, and 
computing technologies. 



VOL. 45 NO. 2 The Role of Digital Technology in Climate Technology Innovation 37 

TABLE 7—EFFECTS OF DETAILED DIGITAL TECHNOLOGY SHOCKS ON SMART GRID TECHNOLOGY 

Dependent Variable: (1) (2) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௔௧௔ ௣௥௢௖௘௦௦௜௚ ௧௘௖௛ ௦௛௢௖௞} 0.224*  

(0.115)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{௠௔௖௛௜௡௘ ௟௘௔௥௡௜௡௚ ௧௘௖௛ ௦௛௢௖௞} 0.258* 
(0.136) 

Constants 
1.631*** 1.631*** 
(0.000) (0.000) 

Observations 241,402 241,402 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

  
shock is reported in Table B8 in the Appendix. 

 
F. Extension III 

 
Finally, I analyze the effects of digital technology on finely defined climate 

technology. As shown in Tables 8 and 9, digital technology has clear effects on six 
finely defined climate technologies out of eight: Climate Change Mitigation 
Technologies Related to Buildings (Y02B); Capture, Storage, Sequestration or 
Disposal of GHG (Y02C); Climate Change Mitigation Technologies in ICT (Y02D); 
Reduction of GHG Emissions, Related to Energy Generation, Transmission or 
Distribution (Y02E); Climate Change Mitigation Technologies in the Production or 
Processing of Goods (Y02P); and Climate Change Mitigation Technologies Related 
to Transportation (Y02T).9 Below are some examples that can help us understand 
what these findings mean and how they are materialized in the real world. 

In 2016, Google was able to reduce the electricity they used to dissipate the heat 
produced by their data center servers by 40% and lower the data center’s power 

 
TABLE 8—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON DETAILED CLIMATE TECHNOLOGIES I 

Dependent Variable: (1) (2) (3) 𝐼௜{௚௥௘௘௡ ௕௨௜௟ௗ௜௡௚ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.347**  

(0.148)  𝐼௜{ீுீ ௣௥௢௖௘௦௦௜௡௚ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.239**  

(0.090)  𝐼௜{ூ்஼ ௣௢௪௘௥ ௦௔௩௜௡௚ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.401* 
(0.231) 

Constants 
1.631*** 1.631*** 1.631*** 
(0.000) (0.000) (0.000) 

Observations 241,402 241,402 241,402 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
9The remaining two climate technologies are Technologies for Adaptation to Climate Change (Y02A) and 

Climate Change Mitigation Technologies Related to Wastewater Treatment or Waste Management (Y02W). 
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TABLE 9—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON DETAILED CLIMATE TECHNOLOGIES II 

Dependent Variable: (1) (2) (3) 𝐼௜{௘௡௘௥௚௬ ீுீ ௥௘ௗ௨௖௧௜௢௡ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.351**  

(0.158)  𝐼௜{௚௥௘௘௡ ௣௥௢ௗ௨௖௧௜௢௡ ௢௥ ௣௥௢௖௘௦௦௜௡௚ ௢௙ ௚௢௢ௗ௦ ௧௘௖௛}× 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.183*  

(0.097)  𝐼௜{௚௥௘௘௡ ௧௥௔௡௦௙௢௥௧௔௧௜௢௡ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.346** 
(0.133) 

Constants 
1.631*** 1.631*** 1.631*** 
(0.000) (0.000) (0.000) 

Observations 241,402 241,402 241,402 
Fixed effects ct, cj ct, cj ct,  cj 

 
usage effectiveness (PUE) by 15% by finding a way to control the building’s HVAC 
efficiently using DeepMind’s machine learning technology.10 A lower PUE implies 
higher energy efficiency. Google expects that this technology could lower electricity 
and water used in power plants and semiconductor manufacturing factories. Google’s 
effort in this way to apply digital technology newly to climate technology gave birth 
to several startups with HVAC optimization of buildings as their business focus. One 
example is BrainBox AI, and such innovations by these startups have reduced GHG 
emission levels of residences, hotels, airports, and grocery stores by 20~40%. Also, 
according to BrainBox AI, their customers were able to lower their electricity bills 
by 25%.11 US969723 is the patent filed by BrainBox AI in February of 2019 to the 
USPTO, which was granted in January of 2021, and this patent is for a system and 
methods of optimizing HVAC control in a building or network of buildings. This 
technology, categorized as G06N (machine learning-related technology), processes 
HVAC-related historical data, weather forecasts, and occupancy rates through 
machine learning to find and utilize the optimal HVAC requirements. This new 
technology started by Google clearly demonstrates the large contribution to Climate 
Change Mitigation Technologies Related to Buildings (Y02B). Also, as Google 
claims, this new technology will make an important contribution to the development 
of the technology categories of Reduction of GHG Emissions, Related to Energy 
Generation, Transmission or Distribution (Y02E), and Climate Change Mitigation 
Technologies in the Production or Processing of Goods (Y02P). This type of 
machine-learning-based technology will contribute to climate change mitigation by 
helping to improve existing technologies and heralding the birth of new technologies. 

Image Data Processing or Generation technology (G06T) helps mitigate climate 
change in various fields. It helps computers to analyze video data from traffic 
cameras in real time to control traffic signals and solve the traffic congestion 
problem, which ultimately lowers GHG emissions. This technology also helps 
analyze satellite images to find methane gas leaks. The Carbon Mapper Satellite 

 
10 Google DeepMind, “Deep Mind AI Reduces Google Data Centre Cooling Bill by 40%,” 2016. 7. 20 

(https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40). 
11Forbes, “These Are the Startups Applying AI To Tackle Climate Change,” 2021. 6. 20 (https://www.forbes. 

com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change/?sh=4926ee727b26). 
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Sensor, developed by joint partners including Planet Labs, NASA, the state 
government of California, and the University of Arizona, is a good example of using 
image data-processing technology to find areas with methane gas and carbon dioxide 
leaks.12  Owing to such image data-processing technologies, we are able to find 
problematic areas in real time and mitigate climate change by solving the problems 
using GHG processing technologies (Y02C). This type of technology will also be 
used in new areas and will greatly help us to mitigate climate change in the near 
future. I will discuss examples where data-processing-related technologies, such as 
technologies for power consumption reductions using data processing, are used for 
climate technologies, including ICT-related electricity consumption reduction 
technology, in the next section while discussing policy implications. The analysis 
results using a future technology shock to test the validity of the results above are 
reported in Table B9 and B10 in the Appendix. I also analyzed the effects of finely 
defined digital technologies on finely defined climate technology. I do not include 
the results from this analysis because they are not stable, which may be due to the 
possible limitation of the technology shock measure used, as discussed previously, 
or due to the mismeasurement issue that can arise when dividing data too finely. I 
plan to re-run this analysis once I find a way to measure a technology shock in a 
continuous manner. 

 
V. Discussion 

  
In this section, I discuss policy implications derived from the previous analysis 

results. Here, I focus on government policies that could help promote development 
in the area of digital technology. 

 
A. Policies for supporting development in technologies 

for reducing power consumption by ICTs 
 

As shown in previous studies and by the real-world examples discussed in the 
previous sections, the digital transformation, especially that of AI technology that 
uses high-performance computers and data centers, will play an even more 
significant role in climate change mitigation. Moreover, as illustrated by the previous 
analysis results in this paper and the results from other papers, it is not easy for us to 
disagree that digital technology can mitigate climate change by improving and being 
combined with climate technology. However, it is also a fact that high-performance 
computers and data centers negatively affect climate change due to their intensive 
power consumption. As I introduced in the previous sections, many existing studies 
and policy institutions worry about and discuss this intensive energy use as it pertains 
to digital technology. Koomey et al. (2011) and the IEA (2022) show that although 
developments in digital technology improve energy efficiency even more rapidly 
than performance improvements, there is room for improving energy efficiency even 
more, and we need to speed this up to accomplish the net-zero goal by 2050. For 

 
12https://www.satimagingcorp.com/applications/environmental-impact-studies/global-warming/  
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these reasons and because the pace of the digital transformation and electrification 
of energies will increase, the importance of technologies for reducing ICT power 
consumption levels will progressively increase. 

Figure 3 shows a specific example where data-processing-related technology 
(G06F), including technologies for power consumption through data processing, is 
applied to a technology for reducing power consumption by ICTs. This is a patent 
about reducing energy consumption by computer processors, which was applied for 
by Intel in 2011 and granted in 2015. As written in the corresponding abstract at the 
bottom right, this technology identifies idle processes among the processes executed 
in the computer processors, combines them, and reduces the power used by these 
idle processes. 

Technologies that can help reduce the electricity use of ICT products, such as 
computer-related products, not only greatly help mitigate climate change but also 
help expedite the digital transformation by lowering the energy cost of firms. Also,  

 

 
FIGURE 3. EXAMPLE OF A DATA-PROCESSING-RELATED TECHNOLOGY (G06F) APPLIED TO A TECHNOLOGY 

FOR REDUCING POWER CONSUMPTION BY ICTS  
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as shown in the previous regression analysis results, the development of such digital 
technology facilitates the development of climate technology. To summarize, 
technologies for reducing power consumption levels by ICTs represent a solution to 
the worrying issues of increasing energy consumption and higher GHG emissions 
levels induced by the digital transformation. Also, through the development of 
technologies capable of reducing power consumption by ICTs, we can potentially 
increase the net energy reduction through the digital transformation process while 
also helping climate technologies to advance. Thus, if we can explicitly support the 
development of technologies that reduce power consumption by ICTs through 
climate policies, not only will this also help reduce climate change, but it will have 
a positive effect on the digital transformation. 

 
B. Policies for removing factors that could hamper investment incentives  

for digital technology 
 

Although climate policies are uniformly applied to all areas to accomplish GHG 
emission goals overall, we can redesign these policies so that we can apply different 
measures, such as lowering the restrictions or slowing down the policy implementations 
for areas where we expect to see a rapid reduction of GHG emissions in an innovative 
way in near future due to, for instance, technological development. By doing so, 
although we may not be able to meet our short-term goal, we can achieve a larger 
GHG emission reduction in the mid to long term. As technology-related investments 
are sensitively affected by the expected returns, regulations in general harm firms’ 
technological development incentives by lowering the expected return from an 
investment. Samsung, for example, is said to be facing difficulties in fulfilling its 
RE100 goal due to an increase in electricity use caused by the production of 
semiconductors with new technologies, local renewable energy prices, and supply 
issues.13 Although participating in the RE100 initiative is thus far voluntary (i.e., 
although participation is in part due to market pressure, it is not enforced by the 
government), it is clear that this type of new friction can impact investment returns. 
This arises because the power supply problem negatively affects semiconductor 
production and lowers profits by increasing the unit production cost, which in turn 
lowers expected returns from investments in technological developments. Importantly, 
however, semiconductors produced using new technologies can do the same tasks 
using considerably less electricity compared to the existing types, as briefly 
explained previously. Thus, technological developments in the semiconductor 
industry can play an important role in significantly improving the net GHG emission 
reduction effect of the digital transformation. 

Continuing the example of semiconductors, firms in this industry always make 
their mid to long-run roadmaps for technological developments available to the 
public and attempt to accomplish their innovations accordingly. Thus, it is easy for 
us to evaluate mid to long-run improvements in the power efficiency and reductions 
of GHG emissions in this industry compared to those in other industries. By 
comparing the evaluated expected GHG emissions reduction from using one unit of 

 
13Chosun Biz, “Enormous Power Consumption of Semiconductor’s EUV Process… RE100 Joined Samsung 

in Trouble,” 2022. 9. 20 (https://biz.chosun.com/it-science/ict/2022/09/20/CTXMIP6IRJBQNJB5F3FTP2JRJI/). 
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new semiconductor (where the evaluation takes into account inter-generational 
technological development spillovers that could arise due to the sequentiality of 
innovation) with the GHG emissions from producing one unit of new semiconductor, 
we could adjust the strength of climate policy enforcement in this industry based on 
the net GHG emissions reduction level. For other digital technologies, we could 
guide firms to make their technological development roadmaps available to the 
public so that we could similarly adjust the strength of climate policy enforcement. 
Thus, we will be able to expedite the GHG reduction speed at the national level if 
we confirm other cases similar to those in the semiconductor industry and design 
detailed policies so that we can promote the development of products and 
technologies related to energy consumption reductions by adjusting the speed of the 
green transformation (low-carbon transformation) for production facilities. Also, 
proper government support for producing the products necessary for the digital 
transformation, such as semiconductors, would greatly help with the digital 
transformation. However, these relaxations of regulation should be done while 
traditional environmental regulations, such as those pertaining to wastewater 
management, are strictly enforced. 

Finally, we could consider policies that support the production and development 
of products that can lower the electricity consumption of consumer electronics, that 
is, policies that directly support the development and production of low-power 
consumption products in general. The Korean government currently indirectly supports 
the development and production of highly energy-efficient consumer electronics by 
encouraging the demand for such products through an expenditure subsidy program 
for top-rated energy-efficient products. However, there is no policy of direct support 
for such products. The reason for considering direct support for the development and 
production of highly energy-efficient consumer electronics is ultimately to reduce 
the time and effort required to accomplish carbon neutrality by reducing the level of 
electricity production through the use of fossil fuels as the total amount of electricity 
used could be reduced by reducing the electricity used by each product. 

Identical to the semiconductor case, we can measure the energy reduction rates of 
new products (degree of reduction for energy use compared to existing products) by 
using the level of electricity use for each product, which is a measure currently used 
for computing the energy efficiency rating. Furthermore, by using this energy 
reduction rate of new products, we can also compute how much the GHG emissions 
are reduced due to the development and production of new products. Then, based on 
this measure, we could fine-tune the timing and degree of climate policies imposed 
on each firm. Also, for firms planning to use renewable energies, we could provide 
benefits such as prioritizing renewable energy use or could provide subsidies based 
on firms’ energy reduction rates of new products. These types of detailed policy 
support are not possible only through conventional demand-based indirect support. 
We will be able to expedite the carbon reduction speed at the national level if we can 
increase the production and demand for products that consume relatively less power. 

 
VI. Conclusion 

  
With regression analyses using the USPTO’s patent database, I find in this paper 
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that developments in various digital technologies, especially technologies related to 
data processing and machine learning, help development in climate technology. 
Thus, we need a discussion that includes policies for inducing developments in 
technologies that could serve as bases for developments in climate technology as an 
aspect of climate policies. For example, although technologies such as microfabrication 
processes and technology for the efficient use of energy will become more important, 
the development and production of products using such technologies could be 
environmentally unfriendly in the short to medium term. In such cases, we could 
relax the environmental regulation applied to firms proportional to the positive effect 
their new products will have on the environment. This will help us gradually transit 
to an environmentally friendly production process without hindering technological 
development. Also, we must consider finding important technologies that could 
serve as bases for developments in climate technology and include these 
technologies in the existing policies on carbon-neutrality-related investment 
subsidization. Because developments and improvements in digital technology are 
already the goals of policies for the digital transformation, simply coordinating this 
goal with climate policy could help us achieve both the digital transformation and 
climate change mitigation sooner. In contrast, whether slowing down the digital 
transformation and developments in digital technology could help achieve our 
climate change mitigation goals remains unclear, as I could not find any evidence 
that climate technology can affect development in digital technology, and many 
existing studies show that digital technology can play an important role in climate 
change mitigation in the mid to long term. 
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APPENDIX 
 
 

A. Additional Tables 
 

TABLE A1—OECD MEMBER COUNTRIES 

Country Number of Patents CPC4 CPC3 
Austria 1,057 212 85 

Australia 1,026 231 87 
Belgium 975 204 87 
Canada 3,675 375 107 

Switzerland 3,861 338 106 
Chile 57 33 25 

Colombia 23 17 15 
Costa Rica 1 1 1 

Czech Republic 123 59 31 
Germany 13,688 480 118 
Denmark 968 174 74 
Estonia 16 14 10 
Spain 495 160 72 

Finland 993 207 84 
France 5,244 390 114 

United Kingdom 4,283 362 111 
Greece 31 14 9 

Hungary 35 22 15 
Ireland 1,031 152 63 
Israel 2,124 206 72 

Iceland 58 14 12 
Italy 1,903 337 102 
Japan 48,397 494 117 
Korea 20,120 393 112 

Lithuania 15 11 8 
Luxembourg 387 111 66 

Latvia 9 7 7 
Mexico 93 57 38 

Netherlands 3,469 296 102 
Norway 470 128 64 

New Zealand 187 77 38 
Poland 94 67 38 

Portugal 63 40 24 
Sweden 2,870 269 96 
Slovenia 23 18 16 

Slovak Republic 11 9 9 
Turkey 111 67 42 

United States 137,923 586 122 
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B. Robustness Check 
 

TABLE B1—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON CLIMATE TECHNOLOGY (𝑠 = 0,1,2) 

Dependent Variable: (1) (2) (3) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.117  

(0.100)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଵ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.190*  

(0.102)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଶ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.206** 
(0.101) 

Constants 
1.630*** 1.629*** 1.629*** 
(0.001) (0.001) (0.001) 

Observations 241,402 241,402 241,402 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
TABLE B2—EFFECTS OF A FUTURE DIGITAL TECHNOLOGY SHOCK ON CLIMATE TECHNOLOGY (𝑠 = 1,2) 

Dependent Variable: (1) (2) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଵ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.181*  

(0.097)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଶ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.081 
(0.105) 

Constants 
1.643*** 1.644*** 
(0.001) (0.001) 

Observations 221,532 221,532 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

  
TABLE B3—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON 

TECHNOLOGY COMBINING CLIMATE AND DIGITAL TECHNOLOGY 

Dependent Variable: (1) (2) 𝐼௜{௖௟௜௠௔௧௘ାௗ௜௚௜௧௔௟ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.304*  

(0.153)  𝐼௜{௖௟௜௠௔௧௘ାௗ௜௚௜௧௔௟ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.188 
(0.161) 

Constants 
0.575*** 0.605*** 
(0.119) (0.131) 

Observations 1,197 1,121 
Fixed effects c c 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 
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TABLE B4—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON CLIMATE TECHNOLOGY, EXCLUDING 
TECHNOLOGY COMBINING CLIMATE AND DIGITAL TECHNOLOGY 

Dependent Variable: log(𝑛𝑝𝑎𝑡௖௜௧) (1) (2) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.213** 0.192** 
(0.102) (0.094) 

Constants 
1.629*** 1.630*** 
(0.001) (0.001) 

Observations 241,402 240,801 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
TABLE B5—EFFECTS OF A DIGITAL TECHNOLOGY SHOCK ON CLIMATE TECHNOLOGY, DIRECTLY USING 

THE NUMBER OF PATENTS FOR DIGITAL TECHNOLOGY AND CLIMATE TECHNOLOGY 

Dependent Variable: log(𝑛𝑝𝑎𝑡௖௧௖௟௜௠௔௧௘) (1) (2) log(𝑛𝑝𝑎𝑡௖௧ିଷௗ௜௚௜௧௔௟) 
0.333*** 0.313*** 
(0.037) (0.041) log(𝑛𝑝𝑎𝑡௖௧ିଷௗ௜௚௜௧௟௔) × 𝐼௧ିଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.024 

(0.018) 

Constants 
1.458*** 1.464*** 
(0.072) (0.073) 

Observations 1,138 1,138 
Fixed effects c, t c, t 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
TABLE B6—ROBUSTNESS TEST FOR EXTENDED REGRESSION ANALYSIS I 

Dependent Variable: (1) (2) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.046  

(0.046)  × 𝐼௖{௄௢௥௘௔} -0.109  

(0.199)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} -0.040 
(0.158) 

Constants 
1.646*** 1.646*** 
(0.000) (0.000) 

Observations 221,494 221,532 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 
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TABLE B7—ROBUSTNESS TEST FOR EXTENDED REGRESSION ANALYSIS II-I 

Dependent Variable: (1) (2) (3) 𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௔௧௔ ௣௥௢௖௘௦௦௜௚ ௧௘௖௛ ௦௛௢௖௞} 0.047  

(0.130)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛}  × 𝐼௧ାଷ{௠௔௖௛௜௡௘ ௟௘௔௥௡௜௡௚ ௧௘௖௛ ௦௛௢௖௞} -0.106  

(0.070)  𝐼௜{௖௟௜௠௔௧௘ ௧௘௖௛}  × 𝐼௧ାଷ{௜௠௔௚௘ ௣௥௢௖௘௦௦௜௡௚ ௧௘௖௛ ௦௛௢௖௞} 0.169 
(0.104) 

Constants 
1.645*** 1.642*** 1.643*** 
(0.002) (0.001) (0.001) 

Observations 221,532 221,532 221,532 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
TABLE B8—ROBUSTNESS TEST FOR EXTENDED REGRESSION ANALYSIS II-II 

Dependent Variable: (1) (2) 𝐼௜{௦௠௔௥௧ ௚௥௜ௗ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௔௧௔ ௣௥௢௖௘௦௦௜௡௚ ௧௘௖௛ ௦௛௢௖௞} -0.135  

(0.165)  𝐼௜{௦௠௔௥௧ ௚௥௜ௗ ௧௘௖௛} × 𝐼௧ାଷ{௠௔௖௛௜௡௘ ௟௘௔௥௡௜௡௚ ௧௘௖௛ ௦௛௢௖௞} 0.058 
(0.218) 

Constants 
1.646*** 1.645*** 
(0.000) (0.000) 

Observations 221,532 221,532 
Fixed effects ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 

 
TABLE B9—ROBUSTNESS TEST FOR EXTENDED REGRESSION ANALYSIS III-I 

Dependent Variable: (1) (2) (3) 𝐼௜{௚௥௘௘௡ ௕௨௜௟ௗ௜௡௚ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} -0.001  

(0.171)  𝐼௜{ீுீ ௣௥௢௖௘௦௦௜௡௚ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} -0.068  

(0.090)  𝐼௜{ூ்஼ ௣௢௪௘௥ ௦௔௩௜௡௚ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.156 
(0.215) 

Constants 
1.645*** 1.646*** 1.645*** 
(0.000) (0.000) (0.000) 

Observations 221,532 221,532 221,532 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 
  



48 KDI Journal of Economic Policy MAY 2023 

TABLE B10—ROBUSTNESS TEST FOR EXTENDED REGRESSION ANALYSIS III-II 

Dependent Variable: (1) (2) (3) 𝐼௜{௚௥௘௘௡ ௥௘ௗ௨௖௧௜௢௡ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} 0.083  

(0.174)  𝐼௜{௚௥௘௘௡ ௣௥௢ௗ௨௖௧௜௢௡ ௢௥ ௣௥௢௖௘௦௦௜௡௚ ௢௙ ௚௢௢ௗ௦ ௧௘௖௛}× 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} -0.015  

(0.110)  𝐼௜{௚௥௘௘௡ ௧௥௔௡௦௣௢௥௧௔௧௜௢௡ ௧௘௖௛} × 𝐼௧ାଷ{ௗ௜௚௜௧௔௟ ௦௛௢௖௞} -0.044 
(0.150) 

Constants 
1.645*** 1.646*** 1.646*** 
(0.000) (0.000) (0.000) 

Observations 221,532 221,532 221,532 
Fixed effects ct, cj ct, cj ct,  cj 

Note: 1) Statistical significance levels: ***p<0.01, **p<0.05, *p<0.1; 2) Standard errors in parentheses. 
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